

Designed for Top Performance and Total Value

Bulletin V-39j

he Big Max BX2001 high

performance valve is a superior quality, ASME

Class 150 and 300 valve

available in standard PFA

and optional UHMWPE, fire

sealed, Apex[™] and TriFlex[®]

metal seated versions.

Offered in 2 in (50 mm)

through 36 in (900 mm)

sizes and in both wafer and

lug body designs, all are

available with a wide variety

of packing options to meet your routine or most rigid

service requirements.

Durco BX2001 Performance Plus Economy Equals Total Value

Total Quality

BX2001 effectively contains fugitive process media emissions regulated by the federal Clean Air Act, including chlorine, hydrofluoric acid and anhydrous HCI. Ideal choice for precise throttling control or on-off service with lighter weight piping systems and less expensive, energy efficient actuators.

Superior Features

- Primary stem seal plus two optional secondary seals provide triple leak protection.
- Retainer is locked in the valve body by a unique lock or fasteners, depending on size.
- Adjustable, live-loaded packing option is available.
- Self-adjusting, self-contained, constant preload stem seal option may be specified.
- Low profile disc increases capacity and provides better flow control.
- Wide range of optional materials include: D20, DMM, DC2, DC3, DNI and DINC.

World Class Valve Performance

- All castings meet rigid ASTM standards.
- All BX2001 valves comply with ASME B16.34, ASME B16.5, ASME B16.10, MSS SP68, MSS SP61, API 598, API 607, API 609, and ISO 5752.
- All PFA seated valves and optional UHMWPE seated valves are tested in accordance with ASME B 16.34 and MSS SP61. No through or external leaks are allowed, thereby exceeding the shut-off requirements of ASME/FCI 70-2 for all classes.
- All Apex and TriFlex metal seated valves are tested to ASME/FCI 70-2 Class IV and VI, respectively, leakage rates.
- All valves available in ASME Class 150 and 300; DIN PN 10, -16, -20, -25 and -40 drilling.

Blow-out proof stem design complies with API 609 criteria to guard against catastrophic leakage and stem blow-out in the event of shaft failure.

Flats or "double D" on shaft provide positive indication of valve position and simplified adaption to automatic actuation.

Large diameter, one-piece high strength shaft reduces deflection for positive, repeatable shut-off at higher ΔP than similar valves.

Independent packing set adjustment prevents stem seal emissions.

Wide choice of packing materials including adjustable and self-adjusting live-loaded with leak detection port or purge fittings for lethal, toxic or sub zero services.

Positioning holes on wafer body allow easy installation and proper alignment between flanges.

Poly Lube[®] bearings or optional Severe Service bearings both offer low torque and high cycle life.

360° O-ring squarely and securely locks retainer ring into valve body. Full coverage retainer ring allows complete compatibility with all gaskets and no interruption in the sealing surface.

Integral cast overtravel disc stop is designed into the casting, not welded in place as an afterthought.

Blind bottom shaft hole eliminates potential leak point.

Compact construction allows installation in tight spaces.

Economical, simplified field repair due to minimum parts, interchangeable disc and shaft, and simple assembly procedures.

All carbon steel bodies electrostatic epoxy coated for enhanced corrosion protection.

PFA/Viton® A energized seat provides positive, bidirectional shut-off with long cycle life on low pressure and vacuum, and high ΔP services. (See page 5 for more information about seating.)

Unique, high strength Gibb pin positively locks valve shaft to the disc. Gibb pin is used on 2 in (50 mm) through 12 in (300 mm) sizes.

The BX2001's double offset disc creates an eccentric seating action which eliminates seat wear, reduces torque and allows disc to "cam" into seat for tight shut-off.

Poly Lube® Bearings

A patented fiberglass weaving/winding process results in a seamless filament-wound fiberglass. Fluoropolymer superfilaments with tensile strengths twenty times greater than PTFE resins are integrated into the bearing and chemically bonded with a proprietary epoxy. A low friction coefficient and high load-carrying capacity are the natural benefits of this bearing. Flowserve tested to 400°F (204°C).

Severe Service Bearings

The special PTFE resin is pressure molded onto a perforated 316 SS sheet. The perforations lock the PTFE onto the 316 SS making a unified bearing that exhibits high corrosion resistance with unparalleled cycle life. This process results in a PTFE/SS bearing where high radial and lateral loads will not deform the PTFE and strip it from its stainless steel backing. Particularly suited for environments detrimental to glass fibers or epoxies.

BX2001 Seat Design Options

ASME Class 150 and 300 Valves

Flowserve offers a wide variety of seat design options to most cost-effectively suit your service requirements.

UHMWPE seat

UHMWPE Seats

For Abrasive Services BX valves with ultra high molecular weight polyethylene (UHMWPE) seats provide long-lasting performance in erosive/abrasive services. UHMWPE seats are rated for services to 200°F (93°C).

Primary seat before fire

-20°F (-6°C) to 400°F (205°C)

-20°F (-6°C) to 400°F (205°C)

Metal seat after fire

400°F (205°C) to 600°F (315°C)

+ 400°F (205°C) high temperature

are rated for services to 200°F (93°C).

Fire Sealed Valves

The fire sealed version BX2001 meets API 607 Requirements. If a fire destroys the PFA/Viton O-ring energized primary seat, the Inconel X750 metal backup seat activates to provide positive sealing.

Apex Metal Seated Valves

Inconel[®] seat assures Class IV shut-off and abrasion resistance. Grafoil[®] gaskets provide secondary sealing. Viton ring locks retainer ring into valve body on designs to 400°F (205°C); Inconel lock wire >400°F (>205°C) to 600°F (315°C).

TriFlex Metal Seated Valves

TriFlex seat design utilizes the sleeve and coil action of three individual Inconel springs. The metal seat plus the energizing force of process fluid pressure provide outstanding shutoff service assuring Class VI compliance. These highly resilient springs also offer excellent corrosion and abrasion resistance for extended service life to 1000°F (538°C).

BX2001 Stuffing Box Packing Options

ASME Class 150 and 300 Valves

Soft Seated Valves

Live loaded, double PTFE cup and cone with lantern ring (purge ports are an additional option)

Double PTFE cup and cone with lantern ring

Triple seal, single PTFE cup and cone (self-adjusting/selfcontained). 2 in (50 mm) – 12 in (300 mm) ASME Class150 only

Live loaded, single PTFE cup and cone (adjustable)

Triple seal, double PTFE cup and cone (self-adjusting/self-contained) with lantern ring. 2 in (50 mm) – 12 in (300 mm) ASME Class150 only (purge ports are an additional option)

Fire Sealed Valves

Shaft packing and gaskets are made of Grafoil to prevent both through and external leakage. Shaft packing performance is enhanced by the Durco rocker arm adjuster.

Notes: The use of lug body style is recommended for fire sealed valves. The use of Belleville washers is not recommended with preformed pure graphite packing rings.

Standard, single Grafoil

Optional double Grafoil with lantern ring (purge ports are an option)

TriFlex and Apex BX2 Metal Seat Valves

- To 400°F (205°C) standard, single PTFE cup and cone (adjustable).
 Optional live loading available (Shown at right.)
- To 400°F (205°Ć) double PTFE cup and cone with lantern ring (adjustable).
 Optional live loading available (Shown at right.)
- To 600°F (315°C)(TriFlex to 1000°F [538°C]) standard, single Grafoil packing set (Shown below right.)

• To 600°F (315°C) (TriFlex to 1000°F [538°C]) double Grafoil with lantern ring

Note: All lantern ring packings on this page are illustrated with two optional 1/8 in (3 mm) NPT purge connections. One 1/8 in (3 mm) bleed or injection port is also available.

Durco's Apex metal seats are all about high performance economy in abrasive, dirty and/or high temperature applications. These HPBV Big Max valves

bridge the performance gap

between standard soft seated BX2 Pressure Class 150 and 300 and the critical service requirements of

TriFlex metal seated valves with Class VI shut-off capability.

Durco BX2 Apex Metal Seated Valves Provide Class IV Shut-Off To 600°F (315°C)

Economy and performance

Apex Pressure Class 150 and 300 valves are offered in two models:

- To 400°F (205°C)
- To 600°F (315°C)

Apex metal seated valves offer all the benefits of Big Max HPBVs plus more.

- Meets ASME/FCI 70-2 Class IV leakage rate criteria
- Bi-directional seating
- Blow-out proof stem to API 609
- Easy seat replacement

- Offered in 2 in (50 mm) thru 36 in (900 mm) sizes
- Inherently fire-safe by design (>400°F [205°C])
- Exceptional cycling performance
- Reasonable seating/unseating torque

Apex BX2 design to 600°F (315°C)

The BX2 design to 600°F (315°C) features single Grafoil packing, hard chrome plated 316 SS bearings and an Inconel lock wire on the retainer ring.

Durco BX2 TriFlex Class VI Metal Seated Valves For High Temperature Services To 1000°F (538°C)

Three models offered

TriFlex Pressure Class 150 and 300 valves may be specified in a choice of four models:

- Standard to 400°F (205°C)
- Intermediate to 600°F (315°C)
- High temperature to 800°F (427°C)
- Modified high temperature to 1000°F (538°C)

Exceptional service life

TriFlex provides extended service life because of carefully selected high performance seat materials and the eccentric disc action of CF-8M (316 SS) hardened electro-nickel coated discs. Abrasive wear is greatly reduced.

Testing

Every valve is tested in accordance with ASME/FCI 70-2 specification to assure Class VI compliance.

Metal-to-metal sealing

TriFlex utilizes the sleeve and coil action of three individual springs plus the energizing force of process fluid pressure to provide outstanding CI.VI shut-off service. These highly resilient springs also offer excellent corrosion and abrasion resistance for extended service life.

Additional design and materials notes

- TriFlex BX2 metal seats for services to 800°F (425°C)
- Hard chrome plated 316 SS bearings
- Single Grafoil packing
- Type XM-19 SS shaft, thrust bearing and washer
- TriFlex BX2 valves for services to 1000°F (538°C)
- Special bill of materials. Consult factory

TriFlex BX2 design to 400°F (205°C)

The BX2 design to 400°F (205°C) features single PTFE cup and cone packing, PTFE/ fiberglass bearings and an Inconel lock ring.

BX2001 Technical Data

ASME Class 150 and 300 Valves

Standard Big Max valves with PTFE packing and PFA or UHMWPE seats are rated for Vacuum Service to .02 mm Hg absolute pressure or 20 microns at ambient temperature. For vacuum services beyond this, please consult your Flowserve Sales Representative.

Seat Recommended Service Temperatures for best performance

- PFA/Viton -10°F (-23°C)/550°F (288°C)
- PFA/Silicone -100°F (-73°C)/550°F (288°C)
- PFA/Inconel -100°F (-73°C)/550°F (288°C)
- Inconel Apex -100°F (-73°C)/600°F (315°C)
- Inconel TriFlex -100°F (-73°C)/1000°F (538°C)

Valve Standards* Applicable to the BX2001							
Specification	Title						
ASME B16.10	Valves – face-to-face dimensions						
ASME B16.34	Valves – flanged and butt-welding end						
ASME B16.5	Pipe flanges and flanged fittings						
ASME/FCI 70-2	American National standard for control valve seat leakage						
MSS SP68	High Pressure – offset seat butterfly valves						
ISO 5752	Metal valves for use in flanged pipe systems – face-to-face & center-to-face dimensions						
API 609	Butterfly valves, lug-type and wafer-type						
MSS SP61	Pressure Testing						
API 607	Fire Test procedures and leakage requirements						
NACE MR-01-75	Flowserve Corporation can furnish valves to this specification with modifications to our standard bill of materials.						
United States Coast Guard	Flowserve Corporation is listed with The U.S. Department of Transportation, United States Coast Guard as an acceptable manufacturer of valves and has received an affidavit listing for valves.						
P.E.D 97/23/EC ISO 9001 Certified	European pressure equipment directive the Cookeville valve operation is ISO 9001						

*Other specifications may apply and those listed may be only partially applicable. Each should be evaluated on a case by case basis. Contact Flowserve with your particular requirements.

†Values given are in accordance with ASME B16.34, 1998 Edition. For materials of construction or temperatures other than those listed, consult the factory as the pressure-temperature ratings may vary.

①BX2L4/BX2L9 valves rated to 150 psi with retainer ring unsupported. ②BX2L1/BX2L3 designs are not rated for end-of-line service unless retainer ring is supported by a mating flange. For services requiring end-of-line with retainer ring unsupported, specify BX2L4 or BX2L9 design. ③Must be installed with seat upstream.
Note: For applications using non-metallic, lap joint flanges or non-standard light weight (<Schedule 40) piping, consult Flowserve.</p>

Fire Sealed Valve

BX2001 Parts List - Standard, Fire Sealed and End Of Line Lug Valves 2 in (50 mm) Thru 12 in (300 mm) Sizes

Standard Valve

End Of Line Lug Valve

(10

(13 (9)

8

Item No.	Description	Carbon Steel	Stainless Steel
1	Body	ASTM A216 Gr. WCB	ASTM A351 Gr. CF-8M
2	Disc	ASTM A351 Gr. CF-8M	ASTM A351 Gr. CF-8M
3	Shaft	ASTM A564 Type 630 17-4 SS	ASTM A564 Type 630 17-4 SS
4	Pin	ASTM A564 Type 630 17-4 SS	ASTM A564 Type 630 17-4 SS
5	Bearing	PTFE/Fiberglass (PTFE/316 SS)	PTFE/Fiberglass (= PTFE/316 SS)
6	Thrust Bearing	ASTM A564 Type 630 17-4 SS	ASTM A564 Type 630 17-4 SS
7	Thrust Washer	1018 Steel	316 SS
•8	Packing Set	PTFE Cup and Cone (Grafoil)	PTFE Cup and Cone (Grafoil)
9	Gland	303 SS	303 SS
10	Adjuster	ASTM A351 Gr. CD4MCu	ASTM A351 Gr. CD4MCu
11	Stud-Adjuster	B8M3 (∎Gr. B-7)	B8M3 (∎Gr. B-7)
12	Nut-Adjuster	Gr. 8 (∎Gr. 2H)	Gr. 8 (∎Gr. 2H)
13	Ground Spring	302 SS	302 SS
14	Retainer Ring	ASTM A516 Gr. 70 Carbon Steel	ASTM A240 Type 316 SS
•15	Lock Ring	Viton A*	Viton A
•16	Seat	PFA	PFA
•17	Seat Energizer	Viton A*	Viton A
18	Seat Ring	1020 Steel	ASTM A240 Type 316 SS
19	Jam Nut	300 Series SS	300 Series SS
•20	Gasket-Fire Seal	■Grafoil**	■ Grafoil
•21	Seat-Fire Seal	■ Inconel X750	■ Inconel X750
22	Capscrew	Chrome Steel	Chrome Steel
•33	Seat	UHMWPE	UHMWPE

Note: 2 in (50 mm) through 8 in (200 mm) have 2 upper and 1 lower bearing, 10 in (250 mm) and 12 in (300 mm) have 3 upper and 2 lower bearings as standard. All Fire Sealed have 1 upper and 1 lower bearing. *Registered trademark of Union Carbide. Materials for Fire Sealed values only. •Recommended spare parts.

BX2001 Parts List - TriFlex Valve 2 in (50 mm) Thru 12 in (300 mm) Sizes

Item No.	Description	Carbon Steel	Stainless Steel
1	Body	ASTM A216 Gr. WCB	ASTM A351 Gr. CF-8M
2	Disc	ASTM A351 Gr. CF-8M (ENC)	ASTM A351 Gr. CF-8M (ENC)
	01-4	ASTM A564 Type 630 17-4 SS to 600°F	ASTM A564 Type 630 17-4 SS to 600°F
3	Snatt	ASTM A479 Type XM19 SS - 601 to 1000°F	ASTM A479 Type XM19 SS - 601 To 1000°F
	Dia.	ASTM A564 Type 630 17-4 SS to 600°F	ASTM A564 Type 630 17-4 SS to 600°F
4	Pin	ASTM A479 Type XM19 SS - 601 to 1000°F	ASTM A479 Type XM19 SS - 601 to 1000°F
F	Destring	PTFE/Fiberglass - to 400°F	PTFE/Fiberglass - to 400°F
5	Bearing	316 SS Chrome Plated - 400 to 1000°F	316 SS Chrome Plated - 400 to 1000°F
0	Thrust Desning	ASTM Type 630 17-4 SS to 600°F	ASTM Type 630 17-4 SS to 600°F
0	Thrust Bearing	ASTM A479 Type XM19 SS - 601 to 1000°F	ASTM A479 Type XM19 SS - 601 to 1000°F
7	Thrust Weeker	1018 Steel to 600°F	316 SS to 600°F
1	Thrust washer	ASTM A479 Type XM19 SS - 601 to 1000°F	ASTM A479 Type XM19 SS - 601 to 1000°F
-0	Dealing Cat	PTFE Cup and Cone to 400°F	PTFE Cup and Cone to 400°F
•ð	Packing Set	Grafoil - 400 to 1000°F	Grafoil - 400 to 1000°F
9	Gland	303 SS	303 SS
10	Adjuster	ASTM A351 Gr. CD4MCu	ASTM A351 Gr. CD4MCu
11	Stud-Adjuster	Gr. B-7	Gr. B-7
12	Nut-Adjuster	Gr. 2H	Gr. 2H
13	Ground Spring	302 SS	302 SS
14	Retainer Ring	ASTM A516 Gr. 70 Carbon Steel	ASTM A240 Type 316 SS
15	Lock Ring Retainer	Inconel	Inconel
•16	Seat	Inconel X750 Std Others as specified	Inconel X750 Std Others as specified
19	Jam Nut	300 Series SS	300 Series SS
22	Capscrew	Chrome Steel	Chrome Steel

• Recommended spare parts.

TriFlex Valve

BX2001 Parts List - Apex Valve 2 in (50 mm) Thru 12 in (300 mm) Sizes

Item No.	Description	Carbon Steel	Stainless Steel
1	Body	ASTM A216 Gr. WCB	ASTM A351 Gr. CF-8M
2	Disc	ASTM A351 Gr. CF-8M (ENC)	ASTM A351 Gr. CF-8M (ENC)
3	Shaft	ASTM A564 Type 630 17-4 SS	ASTM A564 Type 630 17-4 SS
4	Pin	ASTM A564 Type 630 17-4 SS	ASTM A564 Type 630 17-4 SS
5	Bearing	PTFE/Fiberglass to 400°F	PTFE/Fiberglass to 400°F
5a	Bearing	316 SS Chrome Plated 400 to 600°F	316 SS Chrome Plated 400 to 600°F
5b	Bearing	316 SS Chrome Plated 400 to 600°F	316 SS Chrome Plated 400 to 600°F
6	Thrust Bearing	ASTM Type 630 17-4 SS	ASTM Type 630 17-4 SS
7	Thrust Washer	1018 Steel	316 SS
•8	Packing Set	PTFE Cup and Cone to 400°F Grafoil - 400 to 600°F	PTFE Cup and Cone to 400°F Grafoil - 400 to 600°F
9	Gland	303 SS	303 SS
10	Adjuster	ASTM A351 Gr. CD4MCu	ASTM A351 Gr. CD4MCu
11	Stud-Adjuster	Gr. B-7	Gr. B-7
12	Nut-Adjuster	Gr. 2H	Gr. 2H
13	Ground Spring	302 SS	302 SS
14	Retainer Ring	ASTM A516 Gr. 70 Carbon Steel	ASTM A240 Type 316 SS
•15	Lock Ring	Inconel	Inconel
•16	Seat	Inconel X750 - Others as specified	Inconel X750 - Others as specified
•17	Gasket	Grafoil	Grafoil
•18	Seat Gasket	Grafoil	Grafoil
19	Jam Nut	300 Series SS	300 Series SS

Note: 2 in (50 mm) through 8 in (200 mm) have 2 upper and 1 lower bearing, 10 in (250 mm) and 12 in (300 mm) have 3 upper and 2 lower bearings as standard. All Fire Sealed have 1 upper and 1 lower bearing. • Recommended spare parts

BX2001 Parts List 14 in (350 mm) Thru 36 in (900 mm) Sizes

ltem No.	Description	Carbon Steel	Stainless Steel				
1	Body	ASTM A216 Gr. WCB	ASTM A351 Gr. CF8M				
2	Disc	ASTM A351 Gr. CF8M	ASTM A351 Gr. CF8M				
2A	Taper Pins	ASTM A276 Type 316 Condition B/S ASTM A276 Type 316 Condition B/S - To 600°F Monel K-500 - 600-800°F					
2B	Shaft	ASTM A564 UNS ♦For services above 600°F, shaft ma	S17400 Type 630 terial will be ASTM A479 Type XM-19				
•3	Packing Set	PTFE (■0 ♦ PTFE - To 400°F or 0	3rafoil**) Srafoil** - 400-1000°F				
4	Packing Gland	300 Series Stainless Steel	300 Series Stainless Steel				
5	Thrust Washer 14 in (350 mm), 16 in (400 mm), 18 in (450 mm) only	PT ♦ PTFE - To 400°F or	FE Grafoil** - 400-800°F				
6	Packing Washer	Carbon Steel	316 Stainless Steel				
7	Bearing Assembly	PTFE/Fiberglass ♦ PTFE/Fiberglass - To 400°F or 31	(■PTFE/316 SS) 6 SS - Chrome Plated - 400-1000°F				
8	Adjuster Fastener	ASTM A193 Gr ♦ ASTM A193 Gr. B8 - To 400°F o	[:] . B8 (■Gr. B7) r ASTM A193 Gr. B7 - 400-1000°F				
9	Packing Adjuster	ASTM A351 Gr. CD4M-Cu	ASTM A351 Gr. CD4M-Cu				
10	Grounding Spring	300 Series Stainless Steel	300 Series Stainless Steel				
11	Retainer Ring	ASTM A516 Gr. 70	ASTM A240 UNS S31600 Type 316				
12	Seat Ring	Carbon Steel	ASTM A240 UNS S31600 Type 316				
•13	Seat Energizer	Viton A*	Viton A*				
•14	Seat	PFA	PFA				
•15	Retainer Fastener	300 Series Stainless Steel	300 Series Stainless Steel				
•16	Fire-Sealed Seat	■Inconel X750	■ Inconel X750				
•17	Retainer Gasket	■ Grafoil**	■Grafoil**				
•18	Seat Gaske	■Grafoil**	■Grafoil**				
19	Jamb Nut	300 Series Stainless Steel	300 Series Stainless Steel				
20	Thrust Bearing	PTFE	PTFE				
21	Thrust Washer	300 Series Stainless Steel	300 Series Stainless Steel				
22	Adjustment Stud	Carbon Steel - Zinc Plated	304 Stainless Steel				
23	Support Stud	Carbon Steel - Zinc Plated	304 Stainless Steel				
24	Lock Washer	Carbon Steel	300 Series Stainless Steel				
25	Nut	Carbon Steel	ASTM A194 Gr. 8				
26	Thrust Plate	Carbon Steel - Zinc Plated	304 Stainless Steel				
•27	TriFlex Seat	Inconel X750 Std. – Others As specified	Inconel X750 Std. – Others As specified				
•28	Apex Seat	▲Inconel X750 Std. – Others as specified	▲Inconel X750 Std. – Others as specified				
29	Seat Ring	▲Carbon Steel	▲ASTM A240 UNS S31600 Type 316				
•30	Retainer/Seat Gaskets	▲Grafoil**	▲Grafoil**				

Materials for Fire Sealed valves only

• Materials for TriFlex valves only

▲ Materials for Apex Seat valves only

• Recommended spare parts

* Registered trademark of DuPont Company

** Registered trademark of Union Carbide

BX2001 Parts List 20 in (500 mm) Class 300

BX2001 Dimensions for Valves with Actuators

SEAT SIDE

Ŵ

he Durco Big Max BX2001 valve is designed for installation between ASME B16.5 Class 150 and 300 flanges as well as DIN, PN10, PN16, PN20, PN25 and PN40. All styles of metallic flanges * are permissible if clearance is provided for the swing of the disc. Install the valve with the disc in the closed position. Valve should be centered between flanges in order that the disc does not hit the flange/pipe when the valve is opened.

*Lap joint and light weight piping systems (<Schedule 40) consult Flowserve.

Sine A B K L L II M <th></th> <th>Disc Pr</th> <th>ojection</th> <th></th> <th colspan="7">Gear</th> <th>Le</th> <th>ver</th>		Disc Pr	ojection		Gear							Le	ver
(mm) (mm) <th< th=""><th>Size in</th><th>A in</th><th>B in</th><th>K in</th><th>L in</th><th>L1 in</th><th>M in</th><th>N in</th><th>W in</th><th>X in</th><th>Gear Type</th><th>M in</th><th>W in</th></th<>	Size in	A in	B in	K in	L in	L1 in	M in	N in	W in	X in	Gear Type	M in	W in
2 3a 1/a 7/a 3'a 1'b 8'b 3'a 1'b 8's 3'a 1'b 8's 5'a 1'b 8's 5'a 1'b 8's 5'a 1'b 8's 5'a 1'b 1's	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(mm)	(mm)
(56) (10) (32) (20) (73) (41) (22) (23) (49) (40) (40) (40) (55) (50) (10) (32) (20) (73) (41) (22) (23) (11) (23) (23) (44) (43) (44) (45) (44) (4		³ /8	<u>1¹/4</u>	7 ⁷ /8	<u>3¹/8</u>	15/8	8 ¹⁵ /16	8	5 ¹ /4	1 ^{15/16}	HF-MX30	<u>81/16</u>	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(50)	(10)	(32)	(200)	(79)	(41)	(227)	(203)	(133)	(49)		(205)	(355)
(30) (10) (22) (20) (41) (22) (33) (49) (49) (49) (49) (49) (40) (42) (43) (44) (43) (44) (43) (44) (43) (44) (43) (44) (43) (44) (43) (44) (43) (44) (43) <th< td=""><td>2</td><td>3/8</td><td><u>1¹/4</u></td><td>77/8</td><td>31/8</td><td>15/8</td><td>815/16</td><td>8</td><td><u>5¹/4</u></td><td><u>1¹⁵/16</u></td><td>HF-MX30</td><td><u>81/16</u></td><td>14</td></th<>	2	3/8	<u>1¹/4</u>	77/8	31/8	15/8	815/16	8	<u>5¹/4</u>	<u>1¹⁵/16</u>	HF-MX30	<u>81/16</u>	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(50)	(10)	(32)	(200)	(79)	(41)	(227)	(203)	(133)	(49)		(205)	(355)
	(20)	(17)	<u>2'/16</u> (62)	$\frac{8^{3/8}}{(210)}$	(70)	<u> </u>	(246)	<u>(202)</u>	(122)	(40)	HF-MX30	(224)	(255)
	(00)	11/16	2 ⁷ /16	(219) 8 ⁵ /8	(79) 3 ¹ /8	(41) 1 ⁵ /8	Q ¹¹ /16	(203)	(133) 5 ¹ /4	(49) 1 ¹⁵ /16		8 ¹³ /16	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(80)	(17)	(62)	(219)	(79)	(41)	(246)	(203)	(133)	(49)	HF-MX30	(224)	(355)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	1 ¹ /8	35/8	9 ¹ /8	31/8		<u>10³/16</u>	8	5 ¹ /4	1 ¹⁵ /16		<u>9⁵/16</u>	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(100)	(29)	(92)	(232)	(79)	(41)	(259)	(203)	(133)	(49)		(236)	(355)
	4	11/8	35/8	91/8	31/8	15/8	10 ³ /16	8	5 ¹ /4	1 ¹⁵ /16	HF-MX30	9 ⁵ /16	14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(100)	(29)	(92)	(232)	(79)	(41)	(259)	(203)	(133)	(49)		(236)	(355)
	5	<u>1¹/2</u>	41/2	<u>10³/4</u>	<u>35/8</u>	<u>2¹/2</u>	$\frac{12^{1/4}}{(214)}$	8	$\frac{6^{3/4}}{(474)}$	<u>2³/8</u>	HF-MZ30	<u>11¹/16</u>	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(125)	(38)	(114)	(2/3)	(92)	(64)	(311)	(203)	(1/1)	(60)		(290)	(355)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(150)	(52)	$\frac{5^{\circ/16}}{(141)}$	$\frac{11^{1/4}}{(286)}$	<u> </u>	<u> </u>	(324)	(203)	$\frac{b^{0/4}}{(171)}$	<u>2°/8</u> (60)	HF-MZ30	(290)	(355)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	2 ¹ /16	5 ⁹ /16	11 ¹ /4	3 ⁵ /8	2 ¹ /2	12 ³ /4	8	6 ³ /4	2 ³ /8		11 ⁷ /16	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(150)	(52)	(141)	(286)	(92)	(64)	(324)	(203)	(171)	(60)	HF-MZ30	(290)	(355)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	2 ⁵ /8	_7	<u>12⁷/8</u>	4 ³ /8	2 ¹ /2	_14 ³ /4	12	8 ¹ /4	2 ⁵ /8	HF-MV	<u>13¹/8</u>	<u>13³/4</u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(200)	(67)	(178)	(327)	(111)	(64)	(375)	(305)	(210)	(67)		(333)	(349)
	8	<u>2⁵/8</u>	7	<u>13³/8</u>	<u>4³/8</u>	<u>2¹/2</u>	<u>15¹/4</u>	12	<u>8¹/4</u>	<u>2⁵/8</u>	HF-MV	Not	Not
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(200)	(67)	(1/8)	(340)	(111)	(64)	(387)	(305)	(210)	(67)		Available	Available
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(250)	(92)	(237)	$\frac{14^{3}/8}{(371)}$	(111)	(64)	(419)	(305)	$\frac{8^{1/4}}{(210)}$	(67)	HF-MV	INOT Available	NOT Available
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	35/8	9 ⁵ /16	15 ¹ /2	4 ³ /8	2 ¹ /2	17 ³ /8	12	8 ¹ /4	2 ⁵ /8		Not	Not
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(250)	(92)	(237)	(394)	(111)	(64)	(441)	(305)	(210)	(67)	HF-MV	Available	Available
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>12</u> (300)	<u>4¹/2</u> (114)	<u>11³/8</u> (289)	<u>16¹/16</u> (408)	<u>5</u> (127)	<u>2¹/2</u> (64)	<u>18¹/8</u> (460)	<u>12</u> (305)	<u>9³/4</u> (248)	<u>3¹/32</u> (77)	HF-MY40	Not Available	Not Available
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>12</u> (300)	<u>4¹/2</u> (114)	<u>10³/4</u> (273)	$\frac{16^{7}/8}{(429)}$	<u>5</u> (127)	<u>2¹/2</u> (64)	<u>19</u> (483)	<u>12</u> (305)	$\frac{9^{3/4}}{(248)}$	<u>3¹/32</u> (77)	HF-MY40	Not Available	Not Available
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	5	12 ⁴⁵ /64	<u>17⁵/8</u>	6 ⁵ /8	3 ¹ /2	19 ³ /4	18	10 ^{3/16}	43/8	MB-60	Not	Not
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(350)	(127)	(323)	(448)	(168)	(89)	(502)	(457)	(259)	(111)		Available	Available
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(250)	(105)	(210)	$\frac{22^{11}/16}{(576)}$	(169)	(20)	261/16	18 (457)	$\frac{13^{15/16}}{(254)}$	(22)	HSMBF/S3	Not	Not
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(330)	(105) 5 ²⁵ /32	(310) 14 ⁴⁵ /64	(370) 19 ¹³ /16	(100) 75/8	(09) 3 ¹ /2	(002) 22 ¹ /16	(457)	(334) 12 ³ /16	(33) 5 ³ /8		Not	Not
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(400)	(147)	(373)	(503)	(194)	(89)	(560)	(457)	(310)	(137)	MC-60	Available	Available
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	4 ⁵¹ /64	14 ³ /32	247/8	75/8	3 ¹ /2	28 ¹ /4	18	15 ⁹ /16	2 ¹ /16	LIEMDE/C2	Not	Not
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(400)	(122)	(358)	(632)	(194)	(89)	(718)	(457)	(395)	(52)	FIFINIDE/33	Available	Available
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	6 ³ /8	16 ⁹ /16	21 ¹⁵ /32	75/8	3 ¹ /2	23 ³ /4	18	12 ³ /16	5 ³ /8	MC-60	Not	Not
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(450)	(162)	(420)	(545)	(194)	(89)	(603)	(457)	(310)	(137)		Available	Available
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18 (450)	<u>511/32</u>	$\frac{15^{27}/32}{(400)}$	$\frac{28}{(711)}$	(105)	43/8	30'/16	24	$\frac{1/3/16}{(427)}$	<u>5²⁷/64</u> (100)	MD/55	Not	Not
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(450)	(130) 7 ³ /32	(402) 18 ¹⁵ /32	(711) $22^{7}/8$	(195) 7 ⁵ /8	(111) 3 ^{1/2}	(773) 25 ⁹ /64	(010)	(437) 12 ³ /16	(138) 5 ³ /8		Available	Available
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(500)	(180)	(469)	(581)	(194)	(89)	(649)	(457)	(310)	$\frac{37}{(137)}$	MC-60	Available	Available
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_20	6 ¹ /4	17 ¹ /4	24 ⁵ /8	9 ¹ /8	4 ³ /8	28 ¹ /8	18	15 ³ /4	2 ³ /8	MDE/Q2	Not	Not
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(500)	(159)	(438)	(626)	(232)	(111)	(714)	(457)	(400)	(60)	WDF/33	Available	Available
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24	85/16	223/32	$\frac{26^{1/16}}{(000)}$	<u>9¹/8</u>	43/8	297/16	18	15 ³ /4	23/8	MDF/S3	Not	Not
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(600)	(211)	(561)	(662)	(232)	(111)	(748)	(457)	(400)	(60)		Available	Available
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(750)	(279)	(721)	(794)	(240)	(121)	(879)	(457)	(418)	(68)	MGF/S3	Available	Available
$\frac{36}{(900)} \frac{13^{41}/_{64}}{(346)} \frac{34^{3}/_8}{(873)} \frac{40^{1/_4}}{(1022)} \frac{9^{11}/_{16}}{(240)} \frac{4^{3/_4}}{(121)} \frac{47^{3/_4}}{(1108)} \frac{24}{(610)} \frac{20^{11/_{32}}}{(450)} \frac{6}{(68)} \frac{HFMGF/S5}{PSIG \Delta P} Not Available Available$	<u>36</u> (900)	$\frac{13^{41}/64}{(346)}$	<u>34³/8</u> (873)	$\frac{40^{1/4}}{(1022)}$	<u>9⁷/16</u> (240)	$\frac{4^{3/4}}{(121)}$	<u>43⁵/8</u> (1108)	<u>24</u> (610)	17 ²³ /32 (450)	$\frac{2^{11}/16}{(68)}$	HFMGF/S5 FOR 195 PSIG AP	Not Available	Not Available
	<u>36</u> (900)	<u>13⁴¹/64</u> (346)	<u>34³/8</u> (873)	$\frac{40^{1/4}}{(1022)}$	<u>911/16</u> (240)	<u>4³/4</u> (121)	<u>47³/4</u> (1108)	<u>24</u> (610)	<u>20¹¹/32</u> (450)	<u> 6 </u> (68)	HFMGF/S5 FOR 285 PSIG ∆P	Not Available	Not Available

ASME Class 150 ASME Class 300

All dimensions are approximate and for illustration purposes only. For exact dimensions request certified dimensional prints.

BX2001 **Dimensions for** Wafer and Lug Valves

20 in (500 mm) Class 300

Lug

ò

၀

в

R.F.

D1

 \mathbf{c}

30 in (750 mm) - 36 in (900 mm)

Sine An An Bn Cn Cn Cn Cn Cn<	Dimens	imensions Common to BX2 Wafer and Lug Valves															
im im<	Size	A	A1	В	C	D	D1	G	G1	H	H1	J	Q	Ţ	Y	Z	Shaft
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>(mm)</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>(mm)</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	in Ø
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	1 ³ /4	1 ¹ /16	3 ⁷ /8	1 ³ /8	2 ¹ /2	2 ¹ /2	3 ⁵ /8	5/8			11/16	4 ¹ /2	¹ /2-13	<u>4³/4</u>	2 ¹¹ /16	5/8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(50)	(44)	(27)	(98)	(35)	(64)	(64)	(920)	(16)	$\frac{.438}{(11.17)}$	<u>584</u> (<u>14.96</u>)	(17)	(114)	5/8 DP	(121)	(68)	(16)
	2	1 ³ /4	1 ¹ /16	3 ⁷ /8	1 ³ /8	2 ²¹ /32	2 ¹⁵ /16	3 ⁵ /8	⁵ /8	<u>440</u> 	<u>.589</u>	¹¹ /16	4 ¹ /2	¹ /2-13	4 ³ /4	2 ¹¹ /16	5/8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(50)	(44)	(27)	(98)	(35)	(67)	(75)	(920)	(16)	$\frac{430}{(\frac{11.17}{11.13})}$	$\frac{.304}{(14.96)}$	(17)	(114)	5/8 DP	(121)	(68)	(16)
	3	1 ⁷ /8	1 ¹ /8	5	1 ⁷ /16	3 ¹ /8	3 ¹ /8	3 ⁵ /8	5/8	<u>440</u> 	<u>589</u> 584	11/16	4 ¹ /2	¹ /2-13	5 ¹ /2	2 ¹¹ /16	5/8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(80)	(48)	(29)	(127)	(36)	(79)	(79)	(92)	(16)	$\frac{11.17}{(11.13)}$	$\frac{14.96}{14.83}$	(17)	(114)	5/8 DP	(140)	(68)	(16)
	3	1 ¹⁵ /16	1 ¹ /8	5	1 ⁷ /16	33/8	3 ¹³ /16	35/8	5/8	<u>440</u> 438	<u>.589</u> .584	¹³ /16	4 ¹ /2	¹ /2-13	5 ¹ /2	2 ¹¹ /16	5/8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(80)	(49)	(29)	(127)	(36)	(86)	(97)	(92)	(16)	$\left(\frac{11.18}{11.13}\right)$	$\left(\frac{14.96}{14.83}\right)$	(21)	(114)	⁵ /8 DP	(140)	(68)	(16)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	2 ¹ /8	1 ¹ /4	6 ³ /16	1 ¹ /2	35/8	4 ⁷ /32	35/8	⁵ /8	<u>440</u> 438	<u>.589</u> .584	¹¹ /16	4 ¹ /2	¹ /2-13	6	2 ¹¹ /16	⁵ /8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(100)	(54)	(32)	(157)	(38)	(92)	(107)	(92)	(16)	$\left(\frac{11.17}{11.13}\right)$	$\left(\frac{14.96}{14.83}\right)$	(17)	(114)	⁵ /8 DP	(152)	(68)	(16)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	2 ³ /16	1 ¹ /4	6 ³ /16	1 ¹ /2	37/8	425/64	35/8	<u> </u>	<u>440</u> 438	<u>.589</u> 	¹³ /16	4 ¹ /2	¹ /2-13	6	2 ¹¹ /16	5/8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(100)	(57)	(32)	(157)	(38)	(86)	(112)	(92)	(16)	$\left(\frac{11.17}{11.13}\right)$	$\left(\frac{14.96}{14.83}\right)$	(21)	(114)	⁵ /8 DP	(152)	(68)	(16)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2 ¹ /4	1 ⁵ /16	7 ⁵ /16	2 ¹⁵ /16	4 ³ /16	4 ³ /16	4 ¹ /4	<u>1¹/8</u>	<u>623</u> 621	<u>.812</u> <u>.807</u>	¹¹ /16	<u>5¹/4</u>	¹ /2-13	6 ¹ /2	3 ¹³ /16	⁷ /8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(125)	(57)	(33)	(186)	(75)	(106)	(106)	(108)	(29)	$\left(\frac{15.02}{15.77}\right)$	$\left(\frac{20.62}{20.50}\right)$	(17)	(133)	5/8 DP	(165)	(97)	(22)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u>21/4</u>	<u>1º/16</u>	<u> </u>	1'/8	411/16	<u> </u>	41/4	<u>1'/8</u>	<u></u>	<u>.807</u> (20.62)		5'/4	<u>'/2-13</u>		313/16	<u>//8</u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(150)	(57)	(33)	(216)	(47)	(119)	(131)	(108)	(29)	(<u>15.77</u>)	(<u>20.50</u>) 812	(17)	(133)	°/8 DP	(178)	(97)	(22)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	<u>2°/8</u>	<u>1º/16</u>	<u></u>	11/8	53/8	5'/8	41/4	<u> </u>	<u>621</u> (15.82)	<u>.807</u> (20.62)		51/4	<u>1/2-13</u>	7	313/16	<u>//8</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(150)	(60)	(33)	(216)	(47)	(137)	(149)	(108)	(29)	(15.77)	(<u>20.50</u>)	(21)	(133)	3/8 DP	(1/8)	(97)	(22)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> </u>	2'/16	<u> </u>	$\frac{10^{3/8}}{(070)}$	2	6 (150)	<u> </u>	41/4	<u> </u>	(19.00)	1.052	<u> </u>	6 (150)	<u>-'/2-13</u>	<u>8'/4</u>	<u>4'/4</u>	<u>1³/32</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(200)	(62) 0 ²⁹ /20	(35)	(270)	(51)	(152)	(160)	(108)	(29)	.748	1.057	(29)	(152)	1/2 12	(210)	(108)	(28)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(200)	(74)	(25)	(270)	<u>(51)</u>	(172)	(100)	(109)	(20)	<u>.746</u> (19.00)	(26.85)	(20)	(152)	5/8 DD	<u> </u>	(100)	(20)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(200)	(74) 2 ¹⁵ /16	111/16	(270) 10 ³ /4	(31) 23/8	73/4	(102) 7 ³ /4	(100) 5 ¹ /4	(29)	<u>18.95</u>	<u>(26.72)</u> <u>1.339</u>	(29) 11/8	(152) 61/2	5/8-11	(222)	(100)	(20) 1 ³ /8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(250)	(75)	(43)	(324)	(60)	(197)	(197)	(133)	(32)	<u>.871</u> (<u>22.17</u>)	<u>1.334</u> (<u>34.01</u>)	(29)	(165)	3/4 DP	(254)	(108)	(35)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	3 ¹¹ /32	1 ³ /4	12 ³ /4	2 ¹ /2	8 ¹ /2	8 ¹ /2	5 ¹ /4	(32) 1 ¹ /4	<u></u>	<u>1.339</u>	(23) 1 ¹ /8	6 ¹ /2	⁵ /8-11	10 ⁷ /8	<u>(100)</u> <u>4</u> ¹ /4	(00) 1 ¹ /2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(250)	(85)	(45)	(324)	(64)	(216)	(216)	(133)	(32)	$\frac{.871}{(22.17)}$	$\frac{1.334}{(34.01)}$	(29)	(165)	3/4 DP	(276)	(108)	(38)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	3 ⁵ /16	1 ¹⁵ /16	15	2 ³ /8	9	9 ¹ /4	5 ¹ /4	(02) 1 ¹ /4	<u></u>	<u>1.500</u> 1.405	(20) 1 ¹ /2	7	⁵ /8-11	(11 ¹ /2	4 ³ /4	1 ⁵ /8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(300)	(84)	(49)	(381)	(60)	(229)	(235)	(133)	(32)	$\frac{.995}{(25.32)}$	$\frac{1.495}{(38.10)}$	(38)	(178)	3/4 DP	(292)	(121)	(41)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	3 ¹¹ /16	2 ¹ /64	15	2 ³ /4	10	10	6	1 ¹ /2	<u>.997</u> 005	1.500	1 ¹ /2	7 ¹ /2	⁵ /8-11	12 ¹ /4	4 ³ /4	1 ³ /4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(300)	(94)	(51)	(381)	(70)	(254)	(254)	(152)	(38)	$\frac{1.535}{(25.32)}$	$\frac{1.433}{(38.10)}$	(38)	(191)	³ /4 DP	(311)	(121)	(45)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	33/4	2 ⁹ /32	16 ¹ /4	2 ³ /4		14	6 ⁵ /8	1 ¹ /2	<u>1.124</u> 1.122	Contorry	1 ¹ /2	8	¹ /2-13	12 ¹ /2	47/8	1 ³ /4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(350)	(95)	(58)	(413)	(70)		(356)	(168)	(38)	$\left(\frac{28,549}{28,498}\right)$		(38)	(203)	³ /4 DP	(317)	(124)	(44)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	4 ³ /4	2 ²³ /64	17 ⁵ /8	4 ³ /8		19 ¹ /8	7	2 ¹ /2	<u>1.421</u> 1.416		1 ³ /4	8 ¹ /2	⁵ /8-11	15 ³ /8	7 ¹ /2	2 ¹ /8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(350)	(121)	(60)	(448)	(111)		(486)	(178)	(64)	$\left(\frac{36,093}{35,966}\right)$		(44)	(216)	1 ¹ /8 DP	(391)	(191)	(54)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	4 ¹ /8	2 ¹³ /32	18 ¹ /2	3 ³ /16		15 ⁷ /8	7	1 ¹ /2	<u>1.248</u> <u>1.246</u>		2 ¹ /8	9	1/2-13	14 ³ /16	6	_2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(400)	(105)	(61)	(470)	(81)		(403)	(178)	(38)	$\left(\frac{31,699}{31,648}\right)$		(54)	(228)	³ /4 DP	(360)	(152)	(51)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	5 ³ /8	2 ²¹ /32	<u>19⁷/8</u>	5			7	2 ¹ /2	1.684		2 ⁵ /16	<u>8³/4</u>	^{5/8-11}	<u>17³/8</u>	<u>8³/8</u>	2 ¹ /2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(400)	(137)	(67)	(505)	(127)		(527)	(178)	(64)	$\left(\frac{42,024}{42,774}\right)$		(59)	(222)	1 ¹ /8 DP	(441)	(213)	(64)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18	4 ⁵ /8			31/16				<u>1'/2</u>	<u>1.248</u> <u>1.246</u> (21.600)		<u>2³/8</u>	9	<u>'/2-13</u>	1515/16	<u> </u>	21/4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(450)	(118)	(64)	(533)	(78)		(454)	(178)	(38)	$\left(\frac{31,699}{31,648}\right)$		(60)	(228)	3/4 DP	(404)	(155)	(57)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	6	3	223/8	53/8		2313/32	/	21/2	<u>1.872</u> <u>747 500</u>		2'/8	83/8	3/8-11	20	83/8	23/4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(450)	(152)	(76)	(568)	(143)		(599)	(1/8)	(64)	$\left(\frac{47,535}{47,548}\right)$		(73)	(219)	1'/8 DP	(508)	(219)	(70)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	(120)	(71)	23	4%		(017)	(101)	<u> </u>	$\frac{1.872}{(47.599)}$		(70)	9	<u>- */4-10</u>	(405)	(101)	<u>-2'/2</u>
	(000)	(130) 63/9	(71) 27/22	(384)	(111)		(017)	013/16	(51)	2.250		(70)	(228)	3/4 10	(420)	(181)	(04)
$\left \frac{20}{(500)} \right \frac{0}{(162)} \left \frac{3}{(224)} \right \frac{21}{(686)} \left \frac{0}{(163)} \right = \left \frac{19}{(163)} \right \frac{0}{(224)} \left \frac{2}{(51)} \right \frac{2}{(51)} \left \frac{2}{(57,150)} \right = \left \frac{3}{(70)} \right \frac{10}{(70)} \left \frac{7/4-10}{(70)} \right \frac{18^{3}/8}{(162)} \left \frac{7/10}{(163)} \right \frac{3}{(70)} \right \frac{10}{(163)} \left \frac{10}{(163)} \left \frac{10}{(163)} \right \frac{10}{(163)} \left \frac{10}{(163)} \left \frac{10}{(163)} \left \frac{10}{(163)} \right \frac{10}{(163)} \left \frac{10}{(163)} \left $	(500)	(160)	(Q2)	(686)	(169)		(19)	(22/10	<u>(51)</u>	<u>2.248</u> (57,150)		(78)	(076)	1 0	(/67)	(120)	(76)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(000)	(102) 6 ³ /16	(02) 25/32	(000) 27 ¹ /4	(100) 5 ¹ /2		(403) 27 ¹ /2	(224) 8 ¹³ /16	(31)	2.250		(10) 2 ¹ /2	(270) 10 ⁷ /8	3/4-10	(407) 10 ³ /4	(109) 7 ⁷ /16	(10)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(600)	(157)	(80)	(692)	(130)		(698)	(224)	(51)	(57,150)		(79)	(276)	1 DP	(501)	(189)	(76)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	7 ¹ /2	4	33 ³ /4	5 ¹ /2		32 ¹ /4	8 ¹³ /16	2	57,099/ 2.624		3	11 ¹ /4	³ /4-10	24 ¹ /4	7 ³ /4	3 ¹ /2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(750)	(191)	(102)	(857)	(139)		(819)	(224)	(51)	$\frac{2.622}{(66,649)}$		(76)	(285)	1 DP	(616)	(197)	(89)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	8 ¹ /16	47/32	40 ¹ /4	6 ¹ /4		41 ¹ /2	9 ¹ /2	4	2.906		5	11 ¹ /2	³ /4-10	30 ¹ /4	12 ¹ /4	4
(900) (205) (107) (1022) (158) (1054) (241) (102) (73812) (127) (292) 1 DP (768) (311) (102)	(900)	(205)	(107)	(1022)	(158)		(1054)	(241)	(102)	$\left(\frac{73,812}{73,762}\right)$		(127)	(292)	1 DP	(768)	(311)	(102)

ASME Class 150 ASME Class 300

All dimensions are approximate and for illustration purposes only. For exact dimensions request certified dimensional prints.

BX2001 Flange Drilling Specifications Fastener Thread Sizes

Due to the hydrodynamic torque encountered with butterfly valves, safe operating practices dictate that manual gear operators, pneumatic actuators or electric actuators be used when these differential pressures are exceeded.

Maximum Differential Pressures						
Valve Size in (mm)	Max ∆P – Valve 90° open†					
3	34 PSIG					
(80)	(2.3 bar)					
4	16 PSIG					
(100)	(1.1 bar)					
6	7 PSIG					
(150)	(.5 bar)					
8	5 PSIG					
(200)	(3 har)					

†Based on a 120 pound maximum force on wrench. See MSS SP91 for further clarification.

Big Max high performance butterfly valves meet the following flange specifications:

ASME B16.5	2 in (50 mm) -
	24 in (600 mm)
MSS SP44	30 in (750 mm) 8
	36 in (900 mm)
ASME B16.47	30 in (750 mm) &
(Series A)	36 in (900 mm)

Wafer Sty	le – Class	150 and 30	00 Drilling	Lug Style –	Class 150	and 300 D	rilling
Size in (mm)	No. of Holes	Hole Size Inch	B.C. in (mm)	No. of Fasteners	Thread Size Inch	B.C. in (mm)	B1 in (mm)
2 (50)	4	3/4	4 ³ /4 (121)	4	⁵ /8-11	4 ³ /4 (121)	6 (152)
2 (50)	2	3/4	5 (127)	8	⁵ /8-11	5 (127)	61/4 (154)
3 (80)	2	3/4	6 (152)	4	⁵ /8-11	6 (152)	71/2 (191)
3 (80)	2	7/8	6 ⁵ /8 (168)	8	³ /4-10	6 ⁵ /8 (168)	81/8 (206)
4 (100)	2	3/4	71/2 (191)	8	⁵ /8-11	71/2 (191)	9 (229)
4 (100)	2	7/8	77/8 (200)	8	³ /4-10	77/8 (200)	93/8 (238)
6 (150)	2	7/8	9 ¹ / ₂ (241)	8	³ /4-10	9 ¹ / ₂ (241)	11 (279)
6 (150)	2	7/8	105/8 (270)	12	³ /4-10	105/8 (270)	121/8 (308)
8 (200)	2	7/8	113/4 (298)	8	³ /4-10	11 ³ /4 (298)	131/2 (343)
8 (200)	2	1	13 (330)	12	⁷ /8-9	13 (330)	14 ³ /4 (315)
10 (250)	2	1	141/4 (362)	12	7/8-9	141/4 (362)	16 (406)
10 (250)	4***	1-8	151/4 (387)	16	1-8	151/4 (387)	171/4 (438)
12 (300)	2	1	17 (432)	12	⁷ /8-9	17 (432)	19 (483)
12 (300)	4***	11/8-8	173/4 (451)	16	11/8-8	17 ³ /4 (451)	201/4 (514)
14 (350)	4	1 1/16	183/4 (476)	12	1-8	18 ³ /4 (476)	21 (533)
14 (350)	8*	1 ¹ /8-8	201/4 (514)	20*	11/8-8	201/4 (514)	23 (584)
16 (400)	4	1 1/16	211/4 (540)	16	1-8	211/4 (540)	231/2 (597)
16 (400)	8*	11/4-8	221/2 (572)	20*	11/4-8	221/2 (572)	251/2 (648)
18 (450)	4	1 ³ /16	22 ³ /4 (578)	16	1 ¹ /8-8	22 ³ /4 (578)	25 (635)
18 (450)	8*	11/4-8	243/4 (628)	24*	11/4-8	243/4 (628)	28 (711)
20 (500)	8*	11/8-8	25 (635)	20*	11/8-8	25 (635)	271/2 (699)
20 (500)	10*	1 ¹ /4-8	27 (686)	24*	1 ¹ /4-8	27 (686)	30 (762)
24 (600)	8*	11/4-8	291/2 (749)	20*	11/4-8	291/2 (749)	32 (813)
30 (750)	16*	11/4-8	36 (914)	28**	11/4-8	36 (914)	383/4 (984)
36 (900)	16**	1 ¹ /2-8	423/4 (1086)	32**	11/2-8	423/4 (1086)	46 (1168)

ASME Class 150 ASME Class 300

All dimensions are approximate and for illustration purposes only. For exact dimensions request certified dimensional prints.

* The two fastener holes on either side of the shaft, top and bottom, are tapped blind holes (both sides).

 ** Four fastener holes, two on either side of the shaft top and bottom, are tapped blind holes, both sides.

*** The two fastener holes on either side of the shaft, top and bottom, are tapped through.

BX2001 Valve and Operator Weights

BX Manual Operator Weights							
Valve Size in (mm)	Locking Lever	Gear					
2 (50)	6 lbs (2.7 kg)	11 lbs (5 kg)					
2 (50)	6 lbs (2.7 kg)	11 lbs (5 kg)					
3 (80)	6 lbs (2.7 kg)	11 lbs (5 kg)					
3 (80)	6 lbs (2.7 kg)	11 lbs (5 kg)					
4 (100)	6 lbs (2.7 kg)	11 lbs (5 kg)					
4 (100)	6 lbs (2.7 kg)	11 lbs (5 kg)					
6 (150)	6 lbs (2.7 kg)	11 lbs (5 kg)					
6 (150)	6 lbs (2.7 kg)	11 lbs (5 kg)					
8 (200)	20 lbs (9.1 kg)	28 lbs (12.7 kg)					
8 (200)	20 lbs (9.1 kg)	28 lbs (12.7 kg)					
10 (250)	N/A	28 lbs (12.7 kg)					
10 (250)	N/A	28 lbs (12.7 kg)					
12 (300)	N/A	31 lbs (14 kg)					
12 (300)	N/A	31 lbs (14 kg)					
14 (350)	N/A	64 lbs (29.0 kg)					
14 (350)	N/A	94 lbs (42.6 kg)					
16 (400)	N/A	76 lbs (34.5 kg)					
16 (400)	N/A	108 lbs (49.0 kg)					
18 (450)	N/A	76 lbs (34.5 kg)					
18 (450)	N/A	125 lbs (56.7 kg)					
20 (500)	N/A	76 lbs (34.5 kg)					
20 (500)	N/A	101 lbs (45.8 kg)					
24 (600)	N/A	101 lbs (45.8 kg)					
30 (750)	N/A	156 lbs (70.8 kg)					
36 (900)	N/A	HFM GF/S5 156 lbs (70.8 kg) HFM GF/D9 224 lbs (101.6 kg)					

BX Valve Weights* In Pounds (Kilograms)									
Valve Size in (mm)	BX2W	BX2L							
2 (50)	12 lbs (5.4 kg)	12 lbs (5.4 kg)							
2 (50)	10 lbs (4.5 kg)	14 lbs (6.4 kg)							
3 (80)	16 lbs (7.3 kg)	18 lbs (8.2 kg)							
3 (80)	15 lbs (6.8 kg)	21 lbs (9.5 kg)							
4 (100)	20 lbs (9.1 kg)	26 lbs (11.8 kg)							
4 (100)	20 lbs (9.1 kg)	27 lbs (12.2 kg)							
5 (125)	30 lbs (13.5 kg)	35 lbs (15.8 kg)							
6 (150)	35 lbs (15.9 kg)	40 lbs (18.1 kg)							
6 (150)	36 lbs (16.3 kg)	52 lbs (23.6 kg)							
8 (200)	58 lbs (26.3 kg)	68 lbs (30.8 kg)							
8 (200)	63 lbs (28.6 kg)	90 lbs (40.8 kg)							
10 (250)	86 lbs (39 kg)	104 lbs (47.1 kg)							
10 (250)	106 lbs (48 kg)	146 lbs (66 kg)							
12 (300)	125 lbs (56.7 kg)	160 lbs (72.6 kg)							
12 (300)	161 lbs (73 kg)	230 lbs (104 kg)							
14 (350)	250 lbs (113.4 kg)	300 lbs (136 kg)							
14 (350)	345 lbs (157 kg)	636 lbs (289 kg)							
16 (400)	325 lbs (147.4 kg)	400 lbs (181.4 kg)							
16 (400)	480 lbs (218 kg)	900 lbs (408 kg)							
18 (450)	400 lbs (181.4 kg)	500 lbs (226.8 kg)							
18 (450)	685 lbs (311 kg)	1170 lbs (530.7 kg)							
20 (500)	467 lbs (211.8 kg)	624 lbs (283 kg)							
20 (500)	650 lbs (295 kg)	950 lbs (432 kg)							
24 (600)	665 lbs (301.6 kg)	880 lbs (399 kg)							
30 (750)	1050 lbs (476.3 kg)	1425 lbs (646.4 kg)							
36 (900)	2162 lbs (980.7 kg)	2748 lbs (1246.5 kg)							

ASME Class 150 ASME Class 300

All dimensions are approximate and for illustration purposes only. For exact dimensions request certified dimensional prints.

Automax[®] Actuators, Controls and Accessories

For precise throttling control or simple on-off operation of Big Max valves the best choice is Automax actuators, controls and accessories.

BX2001 lug style valve with Automax Super Nova rack and pinion actuator and UltraSwitch

SuperNova™ Pneumatic Rack & Pinion Actuators

Material choices include hard anodized aluminum, epoxy filled composite and stainless steel. Available in torque ranges from 25 in-lb (3 Nm) to 58,000 in-lb (6554 Nm).

Heavy-Duty Rotary Actuators

Scotch-Yoke type provide torques from 3,000 in-Ib (339 Nm) to 500,000 in-Ib (56,500 Nm). Designed for maximum performance and cycle life.

Centura® Electric Rotary Actuators

Precise on-off and modulating control, they are available in metallic and nonmetallic housings with torque ranges from 225 in-lb (25 Nm) to 3,500 in-lb (396 Nm). Hazardous and nonhazardous applications.

XL90™ High Performance Positioner

Analog positioner with two-stage relay for fast, sensitive response characteristics.Pneumatic or electrical control signals. Optional position feedback limit switches, 4-20mA position feedback transmitter, and UltraDome visual position indicator.

Logix[™] Digital Positioner

Combines fast 16-bit microprocessor and two-stage electronic relay with HART[™] protocol for compatibility with smart instrument systems. Quick-Cal[™] function for automatic, push-button calibration. Proprietary software for positioner communication via computer provides a variety of configurations, diagnostics, custom characterizations and other functions.

Accessories

- Auto Brakits[™] mounting kits
- Flow controls, NAMUR accessories, lockouts, gear overrides
- SureGrip[™] valve couplings

UltraSwitch® GL / XL / PL Series Rotary Position Indicators

Compact and economical packages for both visual and remote electrical indication of valve position. Die cast aluminum or non-metallic versions with UL and CSA ratings. Housings suitable for NEMA 4, 4X, 7 & 9 applications.

Aviator™ Rotary Position Indicator

Internal pilot solenoid coil provides a truly integrated package for both visual and electrical position indication as well as air supply control.

APEX™ Modular Positioner

Precise valve positioning with advanced features. Die cast aluminum and non-metallic versions. Modular manifold base for pneumatic or electrical control signals. UL, C-UL, CENELEC & SAA.

BUSwitch™ Valve Control and Monitoring System

Digital rotary position indicator. Control and monitoring of automated on-off quarter-turn valves. FOUNDATION[®] Fieldbus and Profibus-DP protocols.

Index

Actuation	20, 21
Blow-out proof stem	2
Contacts	Back Cover
Control Valves	20, 21
Design Changes	22
Differential Pressure - maximum	18
Dimensions - valves with actuators	14, 15
Dimensions - wafer and lug valves	16, 17
Double offset disc	3
Durco valves	Back Cover
Features and benefits	2.3
Flange specifications - wafer and lug	18
Gihh nin	3
How to specify valves	23
Installation	22
l antern ring	5
Maintenance	22
Materials selection chart	22
Aneration	22
Packing ontions	5
Parts list - all 11-36 in valves	12 13
Parte list - Anay 2-12 in valves	11
Parts list - Apex 2-12 III valves	0
Parts list - fire sealed valve 2-12 in	g
Parts list - file Scaled Valves 2-12 in	0
Parte list - Stalluaru Valves 2-12 III	9
Proceuro tomporaturo ourvos	0
Purgo porto	5
Fully pulls	J 1 6
Seat - Apex Inelai	4, 0
Seat Motol	4
	4, 0, 7
Seal - 10 1000 F (338 C)	4, 7
Seat - 10 600°F (315°C)	4, /
Seat - IriFiex metal	4, /
Seat - UHMWPE	4
Selection, valves	23
Standards for BX2001	8
Stem seal - Apex valves	5
Stem seal - fire sealed valves	5
Stem seal - live loaded valves	5
Stem seal - soft seated valves	5
Stem seal - TriFlex valves	5
Stem seal - with lantern ring	5
Stem seal - with purge port	5
Vacuum service	8
Valve cutaway	2, 3
Weights - operator	19
Weights - valve	19

Selection, Installation, Operation and Maintenance

Although Flowserve can, and often does, provide general guidelines, it is obviously not possible to provide application specific data and warnings for all conceivable applications. The purchaser/end user must therefore assume the ultimate responsibility for the proper selection, installation, operation and maintenance of the products. Read the appropriate IOM available from Cookeville, TN 38501 before installing, operating or repairing any valve. The purchaser/end user should train its employees and/or contractors in the safe use of the Flowserve products in connection with the purchaser's manufacturing processes.

Design Changes

In order to follow Flowserve's commitment to continuous

Automax

improvement, we reserve the right to change product and performance specifications without notice.

BX2001 lug style valve with Automax SuperNova® rack and pinion actuator and Logix® digital positioner.

Materials Selection Chart
DS = ASTM A216 Gr. WCB (CAST STEEL)
D2 = ASTM A351 Gr. CF8 (304 S.S.)
D4 = ASTM A351 Gr. CF8M (316 S.S.)
D4L = ASTM A351 Gr. CF3M (316L S.S.)
D20 = ASTM A351 Gr. CN-7M (DURIMET 20)
CK3M = ASTM A351 Gr. CK-3MCuN (254 SMO)*
DINC = ASTM A494 Gr. CY-40 (INCONEL 600)**
DMM = ASTM A494 Gr. M35-1 (MONEL 400)**
DNI = ASTM A494 Gr. CZ-100 (NICKEL 200)
DC2 = ASTM A494 Gr. N-7M (CHLORIMET 2)
DC3 = ASTM A494 Gr. CW-6M (CHLORIMET 3)
Ti = ASTM B367 Gr. C-3 (TITANIUM)
CD = ASTM A351 Gr.CD4MCu (Durcomet100)

* Registered trademark of Avesta AB **Registered trademark of International Nickel Co. Inc.

How To Specify BX2001 Valves

				Size	Туре	Body	Class I	Material	s Sea	I Seat	t Oper	rator	Options			
					-]-[]-	·∐-L			-	- [
	Valve	e Size														Options
Selection	Code	Selection	Code												Code	Selection
2 in (50 mm)	2	14 in (350 mm)	14												Т	TriFlex/Apex to 400°F
3 in (80 mm)	3	16 in (400 mm)	16												Н	TriFlex/Apex 401°F to 600°F
4 in (100 mm)	4	18 in (450 mm)	18												к	TIFIEX 601°F TO 800°F
5 in (125 mm)	5	20 in (500 mm)	20												Y D	I FIFIEX 801°F to 1000°F Single 1/0" NDT Blood/Ini, Dort1
6 in (150 mm)	6	24 in (600 mm)	24												В	Single 1/8 NPT Bleed/Inj. Port
8 in (200 mm)	8	30 in (750 mm)	30												г I	I WO I/O INFI FUIGE FUILS Pagring Lube (1/0" NPT Part)
10 in (250 mm)	10	36 in (900 mm)	36												C L	CL 2 Cleaned
12 m (300 mm)	12			1											0	02 Cleaned +
	Т	me													s	Special Cleaning *
Selection	.,	Code													N	N.A.C.E. Trim (includes R shaft)
Big Max 2001	1	BX2													J	Steam Jacket
j	_														D	Steam Traced Disc
1	BC	dy		ı											F	Special Fasteners
Lug		L													I.	Inconel 718 Bellevilles 🗨
vvarer		VV													Z	None
	Cla	ass												1	Х	Special Non-Standard
ASME 150 Bidirect	tional	1														
DIN PN10		2														Operator
ASME 150 End of Li	ine Lug	4												1	Code	Selection
DIN PN16		5													0	Locking Lever 2-8 in
DIN PN20		7													1	Enclosed Gear
ASME 300 Bidirect	tional	3													2	Pad Lockable Gear
ASIVE 300 END OF LI	ine Lug	9												I	3	Date Stem
		0														
DIN 1 N40		0		I												Seat
	Body N	laterial													Code	Selection
Selection	Code	Selection	Code	1											V	PFA/Viton Energizer*
D4*∎	1	DC3	6												R	PFA/Silicone Energizer
DS*	8	Ti	7												М	PFA/Inconel Energizer
D4L	L	D2	9												Z	Fire Seal PFA/Inconel
D20	2	DINC	N												N	Inconel TriFlex ◆
DNI	3	UK3IVI OD 4MO	ĸ												S	316/Inconel TriFlex
DC2	5	6D4IVI6U	0												A	Inconel APEX Class IV
DOL	Ū														C	Copper/Inconel TriFlex
	Disc N	laterial													ĸ	
Selection	Code	Selection	Code												4	Nickel/Inconel TriFley
D4*∎	1	DC3	6											•	7	
D4L	L	Ti	7													
D20	2	D2	9													Shaft Seal
DMM	3	DINC	N												Code	Selection
DNI	4	CK3M	K												1	Single PTFE Cup & Cone*
DC2	5	CD4MCU	0												2	Double PTFE Cup & Cone
	Shaft N	Astorial													3	Live Loaded Single Cup & Cone*
Selection	Code	Selection	Code	I											4	Live Loaded Double Cup & Cone**
17-455*	1	Ti	7												7	Triple Seal Single PTFE
31655	s	N50A	R													Cup & Cone (Self-Adjusting)
C20H	2	▲ N50 TriFlex	Т												8	Inple Seal Double PIFE
K Monel 500	3	+601°F													0	Single Grafeil
Nickel	4	Ferralium 255	F												9	Double Grafoil
Hastelloy B	5	254 SM0	K												U	
Hastelloy C276	6	Inconel 625	N	I												
	Bearing	Material														
Selection	Code	Selection	Code													
PTFE/Fiberglass	A	Inconel/PTFE	N													
Hastelloy B/PTFE	В	316SS/PTFE ■	S													
C20/PTFE	С	Monel/PTFE	М													
Hastelloy C/PTFE	Н	Nickel/PTFE	4													
Inconel X750, APEX		316 HCP (TriFlex*	-													
or triflex +400°F	1	or APEX +400°F)	1	1												

Titanium/PTFE L

* = Standard PFA Seat - All other materials considered optional. ** = 17-7 S.S. Belleville Washers included.

 \star = Customer specification must be given.

For use with Shaft Seals 3 & 4 only (17-7 Bellevilles Standard).

I = Standard Fire Sealed.

Standard TriFlex Seat - All other materials considered optional.
 Grafoll Packing is NOT recommended with Belleville Washers.
 ▲ = ASTM A479 Xm19 Standard Triflex +601°F (315°C)

1 = Per Packing Gland

Flowserve has the answer to your corrosion resistant, quarter-turn valving needs.

PLOWSERVE

Automax

Automax

Clockwise from top right.

Durco[®] BTV-2000 PTFE or UHMWPE lined chemical service valve

Atomac[®]

Lined ball valves

- ANSI/ISO, standard and full port
- Specialty valves
- Valve products and accessories

Durco[®] Sleeveline[®] Non-lubricated, PTFE-sleeved plug valves

- G4 Isolation
- G4E DIN Mounting Pad
- G4 Marathon[™]
- TSG4 Severe Service

Durco® T-Line® Non-lubricated, PTFE-lined plug valves

Big Max[®] Butterfly High performance valves

Durco[®] Microfinish[™] Alloy ball valves

Automax[®]

Valve automation systems

- Actuators
- Controls with smart technology
- Accessories

For more information, contact:

Flowserve Corporation Flow Control Division 1978 Foreman Drive Cookeville, Tennessee 38501 Phone: 931 432 4021 Fax: 931 432 3105 www.flowserve.com

Or Consult Your Local Stocking Distributor

Flowserve Ahaus GmbH Von Braun Straße 19a D-48683 Ahaus Germany Phone: +49 2561 686-0 Fax: +49 2561 686-39 Flowserve Pte. Ltd. 12 Tuas Avenue 20 Republic of Singapore 638824 Phone: 65 862 3332 Fax: 65 862 2800

Printed in U.S.A. July 2002 © Flowserve Corporation