

Bay Port Valve & Fitting, Inc.

P.O. Box 315Phone: (863) 425-00232295 S.R. 37 South(800) 369-0194Mulberry, FL. 33860Fax: (863) 425-5091

www.bayportvalve.com

Edward and Anchor/Darling Nuclear Application Valves

Experience In Motion

We'll Support You

Flowserve's Flow Control Division is dedicated to providing continuous aftermarket support to our nuclear customers. Safety-related valves and parts are supplied in accordance with ASME Section III and 10 CFR 50 Appendix B on a routine basis; and more importantly, in support of refueling outages and forced outages at nuclear generating stations.

Flowserve engineers, with working knowledge of nuclear applications and requirements are available on a 24-hour basis to respond to phone calls from nuclear customers with critical outage and unforeseen forced outage help requirements. At Flowserve, *we understand the necessity of maintaining critical-path schedules!*

When you specify Flowserve nuclear safety-related valves, you can rest ensured that the ongoing support and technical backup you may need down the road will be available to you *right now!*

Flowserve's Edward and Anchor/Darling valves are manufactured exclusively at our Raleigh, North Carolina, operation. Of the various Flowserve manufacturing facilities, the Flow Control Division's Raleigh operation is the sole holder of ASME Section III N and NPT stamps, as well as the National Board's Nuclear Repair (NR) stamp.

We maintain a quality assurance system in accordance with ASME Section III and 10 CFR 50 Appendix B with controlled copies of our QA Manual available to nuclear customers. Non-destructive testing including radiography, liquid penetrant inspection, mag particle inspection, ultrasonic testing, PMI and mechanical property testing are performed in-house by ASNT/EN 473 qualified examiners and inspection personnel. Design reports, seismic reports, environmental qualification reports and certified drawings are prepared by Raleigh's engineering department. Additionally, Flowserve's Flow Control Division offers dedication of commercial-grade items by qualified inspection personnel based on engineering-prescribed critical characteristics and dedication methods.

Specify Flowserve Edward and Anchor/Darling valves for nuclear safety-related requirements to ensure strict adherence to applicable nuclear codes and standards, on-time delivery and continuing aftermarket parts support.

Table of Contents

Edward Figure Number Index	5
Edward Valves Availability Chart	6
Edward Description of Figure Number System	8
Anchor/Darling Figure Number Index	10
Anchor/Darling Valves Availability Chart	11
Anchor/Darling Description of Figure Number System	14
High Performance for Critical Service	16
A History of Firsts	19
Edward and Anchor/Darling Valves Available for Nuclear Servi	ce 20
Edward Forged and Cast Steel Valves for Nuclear Service	21
Checklist of Customer Information Required	
for Nuclear Valve Proposals	22
Flowserve Edward Stored Energy Actuator	22
Gas-Hydraulic Actuators for Fail-Safe Isolation Valves	23
Main Steam and Main Feedwater Isolation Valves	24
Edward Gate Valves	<i>25</i>
Features and Description of Edward Equiwedge Gate Valves	26
Parts Specification List for Edward Gate Valves	27
Features and Description of Edward Equiwedge Gate Valves	28
Center Cavity Overpressurization	28
Anchor/Darling Gate Valves	35
Features and Description of Anchor/Darling	
800 Series Gate Valves	36
Parts Specification List for Anchor/Darling	
800 Series Gate Valves	37
Features and Description of	
1888 Series Double-Disc Gate Valves	39
Parts Specification List for Anchor/Darling	10
1888 Series Double-Disc Gate Valves	40
Features and Description of Double-Disc Gate Valves	42
Parts Specification List for Double-Disc Gate Valves Features and Description of Anchor/Darling	43
Flex-Wedge Gate Valves	49
Parts Specification List for Anchor/Darling	49
Flex-Wedge Gate Valves	50
	50
Edward Globe and Stop-Check Valves	57
Features and Description of Edward Bolted Bonnet	
Globe Valves	58
Parts Specification List for Edward	
Bolted Bonnet Globe Valves	59
Features and Description of Edward	
Univalve Globe Valves	62
Parts Specification List for Edward Univalve Valves	63
Features and Description of Edward	0.0
Hermavalve Hermetically Sealed Valves	68
Parts Specification List for Edward Hermavalve	70
Features and Description of Edward Stop-Check Valves	72

Parts Specification List for Edward Globe Valves,	
Stop-Check and Piston Lift Check	73
Features and Description of Edward	
Flite-Flow Globe Valves	74
Special Application Valves	75
Anchor/Darling Globe Valves	<i>89</i>
Features and Description of Anchor/Darling	
800 Series Globe Valves	90
Parts Specification List for Anchor/Darling	
800 Series Globe Valves	91
Features and Description of 1878 Series Globe Valve	93
Parts Specification List for Anchor/Darling	
1878 Series Globe Valves	94
Features and Description of Flowserve	
Anchor/Darling Globe Valves	99
Custom-Designed Plugs	100
Power-Actuated Globe Valves	100
Parts Specification List for Anchor/Darling	
Globe Valves	101
Edward Check Valves	107
Controlled Closure Check Valve	111
Features and Description of Flowserve Edward	
Tilting-Disc Check Valves	112
Features and Description of Edward	
One-Piece Tilting-Disc Check Valve	113
Parts Specification List for Edward	
One-Piece Tilting-Disc Check Valve	114
Anchor/Darling Check Valves	125
Features and Description of 1878 Series Piston Check Valv	es 126
Parts Specification List for Anchor/Darling	
1878 Piston Check Valves	127
Features and Description of 1878 Series Swing Check Valv	es 130
Parts Specification List for Anchor/Darling	
1878 Swing Check Valves	131
Features and Description of Anchor/Darling	
Check Valves	134
Parts Specification List for Anchor/Darling	100
Tilting-Disc Check Valves	136
Parts Specification List for Anchor/Darling	107
Swing Check Valves	137
Parts Specification List for Anchor/Darling Lift Check Valve	100
LIIL OHEGK VAIVE	138
Anchor/Darling Ball Valves	149
Features and Description of Anchor/Darling Ball Valves	150
Parts Specification List for Anchor/Darling Ball Valves	151

Anchor/Darling Butterfly Valves	173
Features and Description of Anchor/Darling	
Butterfly Valves	174
Approximate Weights by Valve Design	175
Standard Materials of Construction	175
Performance Characteristics	177
Accessories/Actuators	187
Accessories – Cast and Forged Steel	189
Actuators – Forged and Cast Steel	191
Required Information for Motor Actuators	192
Tables and Charts	<i>193</i>
Material Chemical Analysis (ASME or ASTM)	194
ASME B16.34 – 2004 Pressure/Temperature Ratings	195

Technical Information

1. Stop and Check Valve Applications Guide	212
	212
1.1.1 Stop Valve Types and Typical Uses	212
1.1.2 Throttling Characteristics of Edward Stop Valves	214
1.1.3 Stop Valve Actuators and Accessories	215
1.1.4 By-Passes and Drains	216
1.1.5 Stop Valve Application Chart	217
1.2 Check Valve Applications Guide	218
1.2.1 Check Valve Types and Typical Uses	218
1.2.2 Check Valve Applications Chart	221
1.3 Check and Stop-Check Valve Installation Guidelines	222
1.3.1 Adjacent Flow Disturbances	224
1.3.2 Other Problem Sources	226
1.4 Check Valve Performance	226
1.4.1 Check Valve Seat Tightness	226
1.4.2 Pressure Surge and Waterhammer	227
1.4.3 Check Valve Accessories and Special Features	230
1.4.4 Check/Stop-Check Valve Periodic Inspection	
and Preventive Maintenance	230
2. Flow Performance	231
2.1 Choose the Best Valve Size for	
	231
2.1.1 Pressure Drop, Sizing and Flow Rate	
	231
2.2 Basic Calculations	232
	232
2.2.2 Required Flow Coefficient	232
2.2.3 Flow Rate	233
	233
1 5 1	233
2.3.1 Gas and Steam Flow	233

2.3.2 Liquid Flow – Cavitation and Flashing	234
2.4 Check Valve Sizing	235
2.4.1 Sizing Parameter	235
2.4.2 Calculations for Check Valves	
Less Than Fully Open	236
2.4.3 Sizing Guidelines	236
2.5 Pipe Reducer Coefficient	237
2.5.1 Pipe Geometry Factor	238
2.5.2 Other Coefficients	238
Conversion of Measurement Units	254
3. Flowserve Valve Design Standards and Features	255
3.1 Codes and Standards	255
3.2 Pressure Ratings	255
3.3 Pressure-Seal Construction	256
3.4 Hardfacing	257
3.5 Valve-Stem Packing	257

Maintenance

Maintenance

211

```
258
```

References to Related Brochures

Brochure	Document Number
Flowserve - Edward	EVENCT0001
Flowserve - Edward	EVENCT0002
Flowserve - Edward and Anchor/Darling Valves	EVENCT0004

In addition to the valves featured in this catalog, Flowserve's Flow Control Division also supplies the following valves for nuclear power plant service:

- Flowserve Valtek Control Valves and Pneumatic Actuators
- Flowserve BW/IP gate, globe and check valves
- Flowserve Durco ball, butterfly and plug valves
- Flowserve Worcester ball valves
- Flowserve McCanna ball valves
- Flowserve Contromatic ball and butterfly valves
- Flowserve Vogt gate globe and check valves
- Crispin air release and air vacuum valves
- DFT (Durabla) in-line check valves
- HBE automatic recirculation valves
- METREX HVAC control valves

For further information on these or any Flow Control Division valve or actuation products, contact your Flowserve sales engineer.

Flowserve - Edward Figure Number Index

Figure	Forged	Cast	Nuclear	Figure	Forged	Cast	Nuclear	Figure	Forged	Cast	Nuclear	Figure		Cast	Nuclear
158	57			• 970Y	0.0	52,53	117,119	• 4017		46,47	80,81	16018	67		
158Y	57			1028	36			• 4017Y		46,47	80,81	35125	27		
160	58			1029	36			• 4092		52,54	117,118	35129	27		
160Y	58			1032	41			• 4092Y		52,54,57	117,118	35225	27		
238	63 63			1032Y	41 40			• 4094 • 4094Y		52 52	117 117	35229 • 36120	27		
238Y	03	28		1038	40							• 36120 • 36122	42		
303 303Y		28		1038Y	38			 4095 4005V 		52,53	117,118		35		64
	_			1046				• 4095Y		52,53	117,118	• 36124	26,42,60		64
304	_	28		1047	38 37			• 4302Y		50,51,56	82,83	36125	45		C.4
304Y	_	28 26		1048 1048Y	37			• 4306Y • 4307Y		50	82	 36128 36129 	26,42,60		64
318 318Y	_							• 4307 Y		50,51	82,83		45		
	_	26		1049	37			• 4314Y • 4316Y		46,47,55	80,81	 36160 26164 	43		05
319	_	26		1049Y	37					46	80	• 36164	43		65
319Y		26		1058	40			• 4317Y		46,47	80,81	36165	46		05
329 329Y		26		1068	39 39			• 4370Y		52,53 52,54,57	117,119	• 36168	43		65
	00	26		1068Y				• 4392Y		52,54,57	117,118	36169	46		
338	63			1069	39 39			• 4394Y		52	117 117,119	 36170 26174 	44		100
338Y	63	0.0		1069Y	39	00		• 4395Y		52,53	117,119	 36174 00475 	44		109
391		30		• 1302		29		• 4402Y		79,80,85		36175	47		100
391Y	-	30		• 1302Y		29,33		• 4406Y		79		 36178 00470 	44		109
394	-	30		• 1314		27		• 4407Y		79,80		36179	47		
394Y	-	30		• 1314Y		27,32		• 4414Y		75,76,84		• 36220	42		
393		30		1324		27		• 4416Y		75		• 36222	35		0.4
393Y		30	70	1324Y		27		• 4417Y		75,76		• 36224	26,42,60		64
• 602		40	79	1390	_	31	<u> </u>	4448Y		58		36225	45		0.4
• 602Y		40,44	79	1390Y		31	<u> </u>	• 4470Y		81,83		• 36228	26,42,60		64
604		39	78	1392		31		• 4492Y		81,82,86		36229	45		
604Y		39	78	1392Y	00.00	31,34		• 4494Y		81		• 36260	43		0.5
605		39	78	1441	22,23		<u> </u>	• 4495Y		81,82		• 36264	43		65
605Y		39	78	1441Y	22,23			4498Y		58		36265	46		0.5
606		39	78	1443	22,23			4502Y		93		• 36268	43		65
606Y		39	78	1443Y	22,23		100	4514Y		92		36269	46		
607		39	78	• 1570Y		68	123	4570Y		95		• 36270	44		400
• 607Y		39	78	• 1611		37,38	29,30	4592Y		94		• 36274	44		109
• 614		36	77	• 1611BY		37,38	29,30	5002Y		93		36275	47		400
• 614Y		36,43	77	• 1611Y	04.05	37,38	29,30	5014Y		92		• 36278	44		109
616		35	76	1641	24,25			5070Y		95		36279	47		
616Y		35	76	1641Y	24,25			5092Y		94		• 66120	48		
617		35	76	1643	24,25			5158	57			• 66124	26,48,61		66
• 617Y		35	76	1643Y	24,25	07.00		5160	58	00.04.70	00.07	66125	51		0.0
618		35	76	• 1711BY		37,38	29,30	• 7502Y		63,64,70		• 66128	26,48,61		66
618Y		35	76	• 1711Y		37,38	29,30	• 7506		63	86	66129	51		
619		35	76	• 1911		48,49	31,32	• 7506Y		63	86	• 66160	49		07
619Y		35	76	• 1911BY		48,49	31,32	• 7507		63,64	86,87	• 66164	49		67
• 670Y		41,42	115,116	• 1911Y		48,49	31,32	• 7507Y		63,64	86,87	66165	52		07
690		41	115	• 2002Y		63,64,70	86,87	• 7514Y		59,60,69	84,85	• 66168	49		67
690Y		41	115	• 2006Y		63,64	86	• 7516		59	84	66169	52		
691		41	115	• 2007Y		63,64	86,87	• 7516Y		59	84	• 66170	50		110
691Y		41	115	• 2014Y		59,60,69	84,85	• 7517		59,60	84,85	 66174 66475 	50		110
• 692		41,42	115,116	• 2016Y		59	84	• 7517Y		59,60	84,85	66175	53		110
• 692Y		41,42,45	115,116	• 2017Y		59,60	87,88	7548Y		58	100.100	• 66178	50		110
694		41	115	• 2070Y		68	123	• 7592Y		65,67,71	120,122	66179	53		
694Y		41	115	• 2092Y		65,67,71	120,122	• 7594		65,66	120,121	• 66220	48		0.0
695		41	115	• 2094Y		65,66	120,121	• 7594Y		65,66	120,121	• 66224	26,48,61		66
695Y		41	115	• 2095Y		65,66	120,121	• 7595		65,66	120,121	66225	51		0.0
• 702Y	-	40,44	79	• 2570Y		81,83		• 7595Y		65,66	120,121	• 66228	26,48,61		66
706Y 707Y		39 39	78 78	3602Y		90,91	<u> </u>	7598Y 9158	57	58		66229 • 66260	51 49		
				• 3902Y	-	79,80,85				-					67
• 714Y		36,43	77	• 3906		79	<u> </u>	9160	58	61.00	2.2	• 66264	49		67
716Y		35	76	• 3906Y		79		• 11511		61,62	33	66265 • 66268	52 49		67
717Y		35	76	 3907 2007V 	-	79,80	<u> </u>	• 11511Y	-	61,62	33,34				0/
• 770Y		41,42	115,116	• 3907Y		79,80		• 11511BY		61,62	33,34	66269 • 66270	52 50		
• 792Y		41,42,45		• 3914Y	-	75,76,84	\vdash	 12011Y 12011PV 		61,62	33,34	• 66270 • 66274	50		110
794Y		41	115	• 3916		75		• 12011BY		61,62	33,34				110
795Y	0.0	41	115	• 3916Y		75		 12511 12511V 		77		66275	53		110
• 828	28		<u>├</u> ──┤	• 3917 • 2017V		75,76		• 12511Y		77		• 66278 66279	50 53		110
• 829	28	-	<u> </u>	• 3917Y	-	75,76	<u> </u>	 12511BY 14211Y 	-	77,78	20.00				-
832	34		<u>├</u> ──┤	• 3992Y		81,82,86	<u> </u>	• 14311Y		48,49	32,32	96124 96128	54,62 54,62		
832Y	34	-	100	 3994 2004V 	-	81	<u> </u>	• 14311BY	-	48,49	31,32	96128			-
• 838	33	-	108	• 3994Y	-	81	<u> </u>	• 14411BY	-	77,78			55		-
• 838Y	33		108	• 3995		81,82	──┤	• 14411Y		77	71	96168	55		
• 846	29			• 3995Y		81,82	00.00	• 15004			71	96174	56		
• 847	29			• 4002		50,51	82,83	• 15008			71	96178	56		
• 848	31			• 4002Y		50,51,56		• 15014			71	96224	54,62		
• 848Y	31		60	• 4006		50	82	• 15018			71	96228	54,62		
• 849	31			• 4006Y		50	82	• 15104			71	96264	55		
• 849Y	31		60	• 4007		50,51	82,83	• 15108			71	96268	55		
• 858	30			• 4007Y		50,51	82,83	• 15114			71	96274	56		-
• 868	32			• 4014		46,47	80,81	• 15118			71	96278	56		
• 868Y	32		61	• 4014Y		46,47,55	80,81	16004	67			DSXXXX	60,61,62		-
• 869	32	1	1	 4016 		46	80	16008	67	1		DEXXXX	60,61,62	1	1
• 869Y	32	-	61	• 4016Y		46	80	16014	67			DCXXXX	60,61,62		

• These valves can be constructed for nuclear service.

Note: See "References to Related Brochures" chart in the Table of Contents to locate figures that do not appear in this brochure.

Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

Flowserve - Edward Valves Availability Chart, Forged Steel Valve Catalog (EVENCT0001)

Edward Forged Steel, Globe, Angle and Check Valves

These valves can be constructed and supplied for nuclear service.

Description	Pressure Rating ^{1,2}	Size ²	Ends	Page
Claba Stan Valuas	ASME 600(110)*	½(15) thru 2(50)	Flanged	28
Globe Stop Valves	ASME 800(130)	¼(6) thru 2(50)	Threaded, Socket	31
	ASME 1690(290)*	1/(45) 11 4/(400)		
Univalve Globe Stop Valves	ASME 2680(460)*	- ½(15) thru 4(100)	Threaded, Socket, Butt Weld	96
Hermavalve Globe Stop Valves	ASME to 1690(290)*	½(15) thru 2-½(65)	Socket, Butt Weld	64-67
Olaha Okar Ohash Valuas	ASME 600(110)*	½(15) thru 2(50)	Flanged	29
Globe Stop-Check Valves	ASME 800(130)	1⁄4(6) thru 2(50)	Threaded, Socket	32
Univelve Clebe Sten Check Velves	ASME 1690(290)*	1/(15) three 4/(100)	Threaded Cooket Dutt World	07
Univalve Globe Stop-Check Valves	ASME 2680(460)*	- ½(15) thru 4(100)	Threaded, Socket, Butt Weld	97
Piston Check Valves	ASME 600(110)*	½(15) thru 2(50)	Flanged	30
Piston Check valves	ASME 800(130)	¼(6) thru 2(50)	Threaded, Socket	33
Pressure Combo	ASME 1690* & 2680*	½(15) thru 4(100)	Socket, Butt Weld	59-61
	ASME 1690(290)*			
Univalve Piston Check Valves	ASME 2680(460)*	- ½(15) thru 4(100)	Threaded, Socket, Butt Weld	89
Ball Check Valves	ASME 800(130)	¹ ⁄4(6) thru 2(50)	Threaded, Socket	89
Strainers	ASME 800(130) & Series 1500	¼(6) thru 2(50)	Threaded, Socket	63
Flanged Univalve	Class 1500(260)	½(15) thru 2(50)	Flanged	35
Univalve Angle Stop, Stop-Check and Check	ASME 1690(290)			45-47
Valves	ASME 2680(460)	1/2(15) thru 4(50) Socket, Butt Weld		51-53

1. See paragraph 3.2, page 255 for definition of various pressure ratings available.

Flowserve - Edward Valves Availability Chart, Cast Steel Valve Catalog (EVENCT0002)

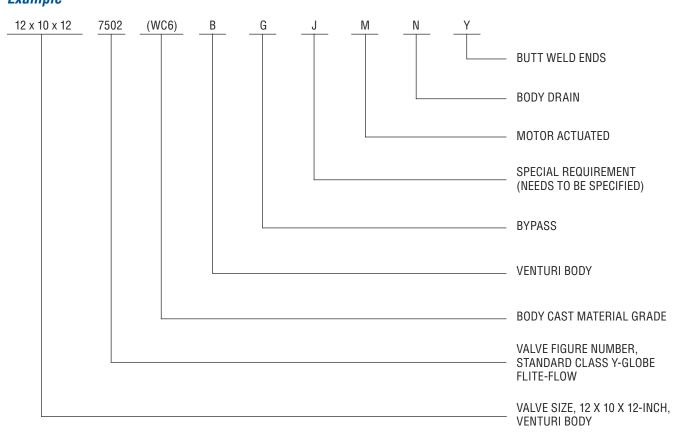
Edward Cast Steel Gate, Globe, Angle and Check Valves

These valves can be constructed and supplied for nuclear service.

Description	Pressure Rating ^{1,2}	Size ²	Ends	Page
Bolted Bonnet Globe and Angle Valves,	ASME 300(50)	2-1/2(65) thru 12(300)	Butt Weld or	26, 28, 30
Stop and Stop-Check (Non-Return) and Bolted Cover Piston Check	ASME 600(110)*	2-1⁄2(65) thru 69(150)	Flanged	35, 38, 41
Pressure Seal Bonnet Globe and	ASME 600(110)*	8(200) thru 14(350)		35, 38
Angle Valves Stop and Stop-Check	ASME 900(150)*	3(80) thru 24(600)	Butt Weld or Flanged	46, 47, 50, 51
(Non-Return)	ASME 1500(260)* & 2500(420)	2-1/2(65) thru 24(600)		59, 60, 63, 75, 79, 80, 81, 82
	ASME 600(110)*	8(200) thru 14(350)		42
Pressure Seal Cover, Piston Check Valves	ASME 900(150)*	8(200) thru 24(600)	Butt Weld or Flanged	52
	ASME 1500(260)* & 2500(420)	2-1/2(65) thru 24(600)		65, 66, 81, 82
Faujwadaa® Gata Valvaa	ASME 600(110)* & 900(150)*	2-1/2(65) thru 32(800)	Butt Weld or	37, 38, 48, 49
Equiwedge [®] Gate Valves	ASME 1500(260)* & 2500(420)	2-1/2(65) thru 24(600)	Flanged	61, 62, 77, 78
	ASME 300(50)	3(80) thru 16(400)		27, 29
	ASME 400(68)	3(80) thru 4(100)		32, 33
	ASME 600(110)*	3(80) thru 32(800)		36, 40
	ASME 700(120)	6(150) thru 32(800)	Butt Weld or	43, 44
Flite-Flow® Globe Valves, Stop and Stop-Check (Non-Return)	ASME 900(150)*	6(150) thru 16(400)	Flanged	47, 51
	ASME 1100(190)	3(80) thru 4(100)		55, 56
	ASME 1500(260)* & 2500(420)	3(80) thru 24(600)		60, 64, 76, 80
	ASME 1800(310) & 2900 (490)	3(80) thru 4(100)		69, 70, 84, 85
	ASME 2000(340)	12(300) thru 14(350)	Butt Weld	72, 73
	ASME 300(50)	21⁄2(65) thru 16(400)		31
	ASME 400(68)	3(80) thru 4(100)		34
	ASME 600(110)*	3(80) thru 32(800)		42
	ASME 700(120)	3(80) thru 4(100)		45
Flite-Flow $^{\circ}$ Piston Check Valves	ASME 900(150)*	3(80) thru 16(400)	Butt Weld or Flanged	54
	ASME 1100(190)	3(80) thru 4(100)		57
	ASME 1500(260)* & 2500(420)	3(80) thru 24(600)		67, 82
	ASME 1800(310) & 2900 (490)	3(80) thru 4(100)		71, 86
	ASME 2000(340)	12(300) thru 14(350)		74
	ASME 600(110)*	6(150) thru 20(500)		42
Tilting-Disc Check Valves	ASME 900(150)*, 1500(260)* & 2500(420)	2½(65) thru 24(600)	Butt Weld	53, 68, 83
Nuclear Valves	Thru ASME 2500(420)*	to Size 32(800)	Butt Weld	See Nuclear Catalog
Special Application Valves	Thru ASME 2500(420)	to Size 18(450)	As Required	58

1. See paragraph 3.2, page 255 for definition of various pressure ratings available.

Edward Description of Figure Number System


Special Material Suffixes

-	
CF8C	Cast 18-8 stainless steel (type 347) body and bonnet. Parts in contact with line fluid either cast or forged 18-8 stainless steel or equivalent.
CF3M	Cast 18-8 stainless steel (type 316L) body and bonnet. Parts in contact with line fluid either cast or forged 18-8 stainless steel or equivalent.
CF8M	Cast 18-8 stainless steel (type 316) body and bonnet. Parts in contact with line fluid either cast or forged 18-8 stainless steel or equivalent.
C5	Cast chromium molybdenum (5 chromium ½ molybdenum) Grade C5 alloy steel body and bonnet. Trim of equal or higher grade alloy steel.
F11	Body and bonnet of forged chromium molybdenum (1-¼ chromium, ½ molybdenum) Grade F11 alloy steel.
F22	Body and bonnet of forged chromium molybdenum (2-1¼ chromium, 1 molybdenum) Grade F22 alloy steel.
F91	Body and bonnet of forged chromium molybdenum (9 chromium, 1 molyb- denum) Grade F91 alloy steel.
F316	Body and bonnet of forged Type 316 stainless steel.
F316L	Body and bonnet of forged Type 316L stainless steel.
F347	Body and bonnet of forged Type 347 stainless steel.
F347H	Body and bonnet of forged Type 347H stainless steel.
LF2	Forged carbon steel material on which Charpy impact tests have been performed on forging heat to determine low-temperature properties.
WC1	Cast carbon molybdenum Grade WC1 body and bonnet.
WC6	Cast chromium molybdenum (1-¼ chromium, ½ molybdenum) Grade WC6 alloy steel body and bonnet.
WC9	Cast chromium molybdenum (2-¼ chromium, 1 molybdenum) Grade WC9 alloy steel body and bonnet.
WCB	Cast carbon steel Grade WCB body and bonnet.
WCC	Cast carbon steel Grade WCC body and bonnet.
C12A	Cast chromium molybdenum (9 chromium, 1 molybdenum) alloy steel body and bonnet.

Special Feature Suffixes

•	
A	Special body only — body pattern altera- tions not required. Flanges on forged valves not normally supplied with flanges. On socket end forged steel valves the inlet and outlet ends are different.
В	Venturi pattern body.
C	Locking devices consisting of padlock and chain.
CD	Locking devices, indicator type.
DD	Equalizer external.
DDI	Equalizer internal.
E	Permanent drain, hole in disc or groove in disc face.
F	Special trim material: used to designate special disc material, special stem material, or inconel spring in check valves.
FF	Special yoke bushing material, such as Austenitic Nodular Iron.
G	Bypasses on all types of cast steel valves
Н	Spur gear operation.
HH	Bevel gear operation.
HHL	Valve-less bevel gear actuator but with actuator mounting equipment.
J	Any unclassified special.
K	Throttle disc or skirted disc.
L	Impactor operated. Used now only to indicate impactor handwheel or handle on valves not regularly furnished with impactor.
LD	Impactorgear or Impactodrive.
М	Motor actuated.
ML	Valve-less actuator but with motor actuator mounting equipment.

MM	Cylinder/diaphragm actuated. Either hydraulic or pneumatic.
MML	Valve-less cylinder/diaphragm actuator but with actuator mounting equipment.
N	Body drilled and tapped or socketed for drains, with or without nipple, with or without drain valves.
Р	Non-standard packing of all types.
PL	Plastic lined.
Q	Non-standard bonnet gaskets or gasket plating.
R	Special lapping and honing and gas testing (recommended for valves on high pressure gas service).
S	Smooth finish on contact faces of end flanges.
Т	Critical service requiring special testing and/or NDE.
UF	Unfinished ends.
W	Stellited seat and disc. Suffix not used for valves that are cataloged as having stellited seat and disc as standard.
Х	Ring joint facing on body end flanges.
Y	Welding ends either socket or butt. Suffix not used for valves where figure number designates welding ends as standard, such as Fig. 36224 and 66228, for example.
T1	ASME Section III Class 1 compliance.
T2	ASME Section III Class 2 compliance.
Т3	ASME Section III Class 3 compliance.
T4	ASME Section III compliance without "N" stamp.
T5	Nuclear safety related-10CFR21 invoked.

Edward Description of Figure Number System

XX

1 alpha digit prefix Indicates design revision, if applicable.

2 alpha digits indicates style of pressure combo valve.

XXXXX

3-5 digits figure number

(XXX) 3-4 digits body material designation

XXXXXXX 1 or more digits as required suffixes (see list) Unless otherwise specified when ordering Edward valves, the standard material of construction for Forged products is A/SA105 Carbon Steel, and for Cast products is SA216 Grade WCB Carbon Steel.

Listed on page 8 are the letter suffixes used to indicate variations from standard construction, or special features (Ex. 618K, 7506 [WC6]Y, and 847 AH.)

When two or more suffixes follow a figure number, a definite suffix sequence is to be used.

The sequence is:

1) Special material (if applicable).

2) Other applicable feature suffixes in alphabetical order, except T1-T5, which are listed last.

Flowserve - Anchor/Darling Figure Number Index

Figure	Nuclear
BAG41C	102
BAG41U	102
BBF89L	183
BBF89V	178,179
BBV93U	153
BBV94C	157
BBV94S	155
BBV94U	156
BBV95C	160
BBV95S	158
BBV95U	159
BBV96U	153
BDD10C	44
BDD10U	44
BGB21C	102
BGB21U	102
BGT01C	51
BGT01U	51
BSC52C	144
BSC52U	144
BTD63C	139
BTD63U	139
BYA80C	102
BYA80Y	102
BYG31C	102
BYG31U	102
CAG41C	103
CAG41U	103
CBF89V	180
CBL91L	184
CBV93U	154
CBV94C	163
CBV94S	161
CBV94U	162

Figure	Nuclear
CBV95C	166
CBV95S	164
CBV95U	165
CBV96U	154
CDD10C	45
CDD10U	45
CGB21C	103
CGB21U	103
CGT01C	52
CGT01U	52
CSC51C	145
CSC51U	145
CTD63C	140
CTD63U	140
CYA80C	103
CYA80U	103
CYG31C	103
CYG31U	103
EAG41C	104
EAG41U	104
EAG44C	104
EAG44U	104
EBF89L	185,186
EBF89V	181,182
EBV94C	168
EBV94S	167
EBV95C	170
EBV95S	169
EDD10C	46
EDD10U	46
EDD15C	46
EDD15U	46
EGB21C	104
EGB21U	104

Figure	Nuclear
EGB24C	104
EGB24U	104
EGT01C	53
EGT01U	53
EGT05C	53
EGT05U	53
ESC51C	146
ESC51U	146
ESC58C	146
ESC58U	146
ETD63C	141
ETD63U	141
ETD67C	141
ETD67U	141
EYA80C	104
EYA80U	104
EYA81C	104
EYA81U	104
EYG31C	104
EYG31U	104
EYG34C	104
EYG34U	104
FAG44U	105
FDD15C	47
FDD15U	47
FGB24U	105
FGT05C	54
FGT05U	54
FSC58C	147
FSC58U	147
FTD67C	142
FTD67U	142
FYA81U	105
FYG34U	105

Figure	Nuclear
GAG44U	106
GDD15C	48
GDD15U	48
GGB24U	106
GGT05C	55
GGT05U	55
GSC58C	148
GSC58U	148
GTD67C	143
GTD67U	143
GYA81U	106
GYG34U	106
NBG34S	97
NBG34U	97
NGB24S	95
NGB24U	95
NGI29S	98
NGI29U	98
NPC78S	129
NPC78U	129
NSC51S	132
NSC51U	132
NSC58S	133
NSC58U	133
NYG34S	96
NYG34U	96
NYP79S	128
NYP79U	128
TDD15S	41
TDD15U	41
UGB24S	92
UGB24U	92
USW90S	38
USW90U	38

These valves can be constructed for nuclear service.

Note: See "References to Related Brochures" chart in the Table of Contents to locate figures that do not appear in this brochure.

Flowserve - Anchor/Darling Valves Availability Chart

Anchor/Darling Small Bore, Globe, Angle and Check Valves

These valves can be constructed and supplied for nuclear service.

Description	Pressure Rating ^{1,2}	Size ²	Ends	Page
Globe Stop Valves	ASME 800(130)*	½(15) thru 2(50)	Socket, Butt Weld	89-92
	ASME 1878(310)*	½(15) thru 2(50)	Socket, Butt Weld	93-98
Gate Stop Valves	ASME 800(130)*	1/(15) thru $0/50$	Socket, Butt Weld	36-38
	ASME 1888(310)*	½(15) thru 2(50)	Socket, Butt Weld	39-41
Bellows Globe Stop Valves	ASME to 1878(310)*	½(15) thru 2(50)	Socket, Butt Weld	97,98
Piston Check Valves	ASME 1878(310)	½(15) thru 2(50)	Socket, Butt Weld	126-129
Swing Check Valves	ASME 1878 (310)	½(15) thru 2(50)	Socket, Butt Weld	130-133

1. See paragraph 3.2, page 255 for definition of various pressure ratings available.

Flowserve - Anchor/Darling Valves Availability Chart

Anchor/Darling Cast Steel Gate, Globe, Angle and Check Valves

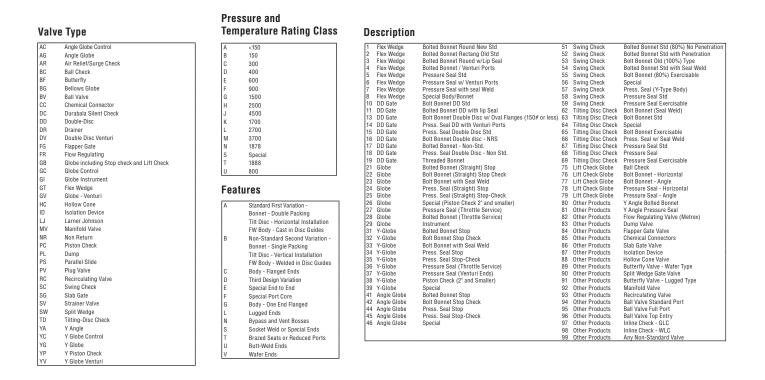
These valves can be constructed and supplied for nuclear service.

Description	Pressure Rating ^{1,2}	Size ²	Ends	Page
	ASME 150(25)	2-½(65) thru 24(600)		102
Bolted Bonnet Globe and Angle Stop Valves	ASME 300(50)	2-1⁄2(65) thru 24(600)	Butt Weld or Flanged	103
	ASME 600(110)*	2-1⁄2(65) thru 24(600)		104
	ASME 600(110)	2-1⁄2(65) thru 24(600)		104
Pressure Seal Bonnet Globe and Angle Stop Valves	ASME 900(150)	2-½(65) thru 24(600)	Butt Weld or Flanged	105
	ASME 1500(260)	2-1⁄2(65) thru 24(600)		106
	ASME 150(25)		Butt Weld or Flanged	44
Bolted Bonnet Double-Disc Gate Valves	ASME 300(50)	2-½(65) thru 24(600)		45
	ASME 600(110)			46
Pressure Seal Bonnet Double-Disc Gate Valves	ASME 600(110)		Butt Weld or Flanged	46
	ASME 900(150)	2-½(65) thru 24(600)		47
	ASME 1500(260)			48

1. See paragraph 3.2, page 255 for definition of various pressure ratings available.

Flowserve - Anchor/Darling Valves Availability Chart

Anchor/Darling Cast Steel Gate, Globe, Angle and Check Valves


These valves can be constructed and supplied for nuclear service.

Description	Pressure Rating ^{1,2}	Size ²	Ends	Page
Bolted Bonnet	ASME 150(25)			51
Flex Wedge Gate Valves	ASME 300(50)	2-1⁄2(65) thru 24(600)	Butt Weld or Flanged	52
Flex weuge date valves	ASME 600(110)		Thangou	53
	ASME 600(110)			53
Pressure-Seal Bonnet	ASME 900(150)	2-1⁄2(65) thru 24(600)	Butt Weld or Flanged	54
Flex Wedge Gate Valves	ASME 1500(260)		langou	55
	ASME 150(25)		Butt Weld or Flanged	139
Bolted Bonnet Tilting Disc Check Valves	ASME 300(50)	2-½(65) thru 24(600)		140
	ASME 600(110)			141
	ASME 600(110)		Butt Weld or Flanged	141
Pressure-Seal Bonnet Tilting Disc Check Valves	ASME 900(150)	2-1⁄2(65) thru 24(600)		142
	ASME 1500(260)		liangea	143
	ASME 150(25)		Butt Weld or Flanged	144
Bolted Bonnet Swing Check Valve	ASME 300(50)	2-1⁄2(65) thru 24(600)		145
	ASME 600(110)		langed	146
	ASME 600(110)		Butt Weld or Flanged	146
Pressure Seal Bonnet Swing Check Valve	ASME 900(150)	2-1⁄2(65) thru 24(600)		147
	ASME 1500(260)			148

1. See paragraph 3.2, page 255 for definition of various pressure ratings available.

Anchor/Darling Description of Figure Number System

Unless otherwise specified when ordering Anchor/Darling valves, the standard material of construction for Small Bore products and for Cast products is A/SA216 Grade WCB Carbon Steel.

Custom and specialty materials, configurations and designs are available with Anchor/Darling products.

<u>14</u>

Page intentionally left blank

High Performance for Critical Service

Nuclear Safety Related ... in this critical service, you can take no chances with safety, and you can accept no compromise in quality. Flowserve's Edward and Anchor/Darling valves don't just meet standards – *they exceed them*. Our dedication to engineered quality and rigorous design standards are demonstrated by understanding and appreciating of the *absolute necessity of dependability* for valves installed in nuclear reactors.

Conservative Design

Flowserve's approach to the design of safety-related valves for nuclear service is highly conservative. We meet applicable codes and standards, but go beyond those criteria employing finite element stress analysis of critical valve areas coupled with stringent proof testing. This testing and real-world installed experience have resulted in valves that exhibit very high flow efficiencies.

You will find innovative design advantages throughout the Edward and Anchor/Darling Product Lines. For example, the Edward Equiwedge gate valve features a split-wedge gate assembly that aligns perfectly into the valve's seats by virtue of cast body guide groves; this split-wedge feature ensures leak-tight closure even if a seismic event causes racking or distortion of piping. Many of what are today termed *industry standards* started out as design concepts on Flowserve drawing boards.

Precision Manufacturing

Flowserve's Raleigh operation employs state-of-the-art six-axis machining centers that are computer controlled to

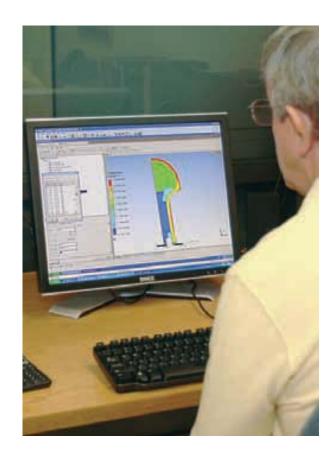
ensure repeatability, parts interchangeability and spot-on perfect dependability. Flowserve Raleigh has also developed reliable sources for castings, steel and other components that ensure continuous uninterrupted manufacturing cycles on time, within critical path shipment, of your nuclear valves and parts. Our suppliers are dedicated professionals who team with Flowserve to ensure your critical deliveries are "on the dock" on time and correct every time.

Dedicated People

Flowserve's Raleigh operation employs highly skilled people dedicated to delivering the very finest and safest nuclear valves you can buy. Our engineering department is staffed with experienced senior men and women with years of practical experience working with nuclear safety-related applications in Raleigh and in the field; they bring *working knowledge of the nuclear power business* to your valve applications. These engineers mentor newer members of our engineering team, passing along insight and practical knowledge. Similarly, our inside sales and contract administration people bring years of practical hands-on experience to your valve requirements. They *speak the language* of nuclear application and will understand the intricacies of your technical inquiries.

For nuclear power plant applications, call the professionals at Flowserve's Flow Control Division – Raleigh.

flowserve.com


Designed with an Eye on Your Bottom Line

In-house computer-aided design and finite-element method capabilities give our engineering staff powerful tools to develop reliable valves for critical service applications. CAD-generated graphic models undergo FEM analysis to determine that stresses are within acceptable limits. Dynamic simulation of valve operation also helps ensure reliability of Flowserve Edward and Anchor/Darling valve performance.

Prototyping is just as important, and rigorous proof testing is a mainstay of Edward valve design. Before we approve a valve for production, we put it through hundreds, even thousands, of cycles to demonstrate that performance and sealing integrity will be maintained in service. Transducers relay data from test assemblies to computers for further analysis.

Laboratory simulation of critical services includes a steam generator and superheater, designed for 2700 psi and 1050°F. This flexible system allows testing of prototype valves under both low-pressure and high-pressure conditions. In addition to prototype testing, this system has been used for applications such as friction and wear tests of valve trim materials in hot water and steam environments; qualification tests of new or redesigned valves; and proof testing of new valve gaskets and valve stem packings.

Before we make the first production unit, that valve has already been through a rigorous program to ensure long life, simple maintenance and dependable performance for the lowest cost over the life of the valve. Again, people play important roles in design. The Flowserve product engineering department pools well over 400 years of valve experience.

Testing Beyond Code Requirements

At Flowserve Edward and Anchor/Darling Valves, quality assurance starts with meeting code requirements. Valves are manufactured to ASME section III and ANSI B16.34 (Standard, Limited and Special Classes), including standards for:

- · Minimum wall thickness of valve body.
- Body, bonnet and body-bonnet bolting to specified ASME and ASTM material standards.
- · Non-destructive examination requirements.
- Hydrostatic shell testing at 1.5 times the 100°F rating of the valve.

From there, Flowserve Edward and Anchor/Darling valves go on to exceed the code, with higher test standards and an additional battery of tests performed on every type of valve we make, using in-house test facilities and personnel to ensure expert quality control. Flowserve's quality assurance program includes:

Non-Destructive Examination

- NDE personnel are qualified in accordance with ASNT-TC-1A and EN473 requirements.
- castings are visually examined per MSS SP-55.
- The first five body castings from every pattern are 100 percent radiographed to verify casting quality.

Hydrostatic Testing

- The seat-leakage criteria—no visible leakage for forged steel stop, stop-check and check valves and 2ml/hour/inch of nominal valve size for cast steel—are stricter than the allowed leakage rate of MSS SP-61, which is 10ml/hour/inch of nominal valve size for stop valves and 40ml/nr/in for stop-check and check valves.
- Seat-leakage test is performed at 110 percent of 100°F rating.

Quality Control

Requirements are clearly stated and measurements are taken to determine conformance to those requirements. "Quality" equals conformance to requirements.

Welding

Personnel and procedures are qualified in accordance with ASME Boiler and Pressure Vessel Code, Section IX and ASME Section III.

Additional Standard Tests for Specific Valves

Includes heavy-wall examination on large body castings.

We have listed only a few of the Flowserve Edward and Anchor/ Darling valve standard tests that exceed industry requirements. In addition, Flowserve has the facilities and the expertise to meet additional quality assurance standards as required for the application.

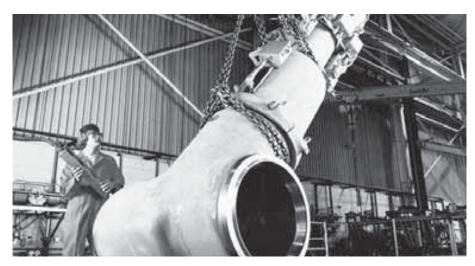
A History of Firsts

Feature	Benefit
Body-guided discs on globe and angle valves	Minimize wear and ensure alignment for tight sealing.
Integral Stellite hardfaced seats in globe and angle valves	Permit compact design and resist erosion.
Hermetically sealed globe valves with seal-welded diaphragms	Prevent stem leakage in critical nuclear plant applications.
Equalizers for large check and stop-check valves	Ensure full lift at moderate flow rates and prevent damage due to instability.
Compact pressure-seal bonnet joints	Eliminate massive bolted flanges on large, high-pressure valves.
Qualified stored-energy actuators	Allow quick-closing valves in safety-related nuclear plant applications.
Qualified valve-actuator combinations	Used in main steam and feed-water service throughout the world.
Stainless steel spacer rings on gate valves, fitted between wedge halves	Simplify service. Damaged valve seats can be restored to factory fit by in-line replacement with slightly thicker ring.
Unique two-piece, flexible wedges on gate valves	Automatically adjust to any angular distortion of body seats. Shape provides greater flexibility. Ensure dependable sealing and prevent sticking.
Impactor handwheels and handles	Allow workers to generate several thousand foot-pounds of torque, thus ensuring tight shutoff of manually operated globe and angle valves.
Inclined-bonnet globe valves with streamlined flow passages	Minimize pressure drop due to flow.
Globe valves available with both vertical and inclined stems	Provide stem designs suited to any installation.
Live-loaded pressure energized PressurSeat® for globe valves	Globe valve design for high-pressure drain and vent service.
Shipped first N-stamp valve	Early and uninterrupted support for the nuclear industry.
First gate valve for the MSIV service	Lower pressure drop and reduced actuator size.
First gas-hydraulic actuator for MSIVs	Self-contained actuator independent of outside systems.
First to qualify a valve to ASME QME-1	Proven dedication to evolving industry requirements.

Flowserve - Edward and Anchor/Darling Valves Available for Nuclear Service

The vast majority of Edward and Anchor/Darling forged and cast steel valves can be supplied for nuclear service. The following chart summarizes past Edward and Anchor/Darling valve experience by Type, Size Range and Pressure Class. Consult your Flowserve Edward valves sales representative for additional information.

	Valve Type	Size	ANSI Ratings	
	Bolted Bonnet	½ (15) Thru 2 (50)	Thru Class 600	
Forged Steel Valves	Hermavalve	1⁄2 (15) Thru 2-1⁄2 (65)	Thru Class 1690	
	Univalve	1⁄2 (15) Thru 4 (100)	Thru Class 2500	
	Soft Seated Check Valve	1⁄2 (15) Thru 4 (100)	Thru Class 2500	
	800 Series	½ (15) Thru 2 (50)	Thru Class 800	
	1878 Series	½ (15) Thru 2 (50)	Thru Class 1878	
	Equiwedge Gate			
	Flex Wedge Gate	2-1⁄2 (65) - 28 (700)	Thru Class 2500	
	Double-Disc Gate			
	Flite-Flow Globe	3 (80) - 32 (800)	Thru Class 2500	
• · • ·	(Stop, Stop-Check & Check)	3 (80) - 32 (800)		
Cast Steel	Tilting-Disc Check	2-1⁄2 (65) - 24 (600)	Thru Class 2500	
	Swing Check	2-1⁄2 (65) - 32 (800)		
	In-Line Check	1 (30) Thru 2-1⁄2 (65)	Thru Class 1500	
	Globe and Angle Valves (Stop, Stop Check & Check)	2-1⁄2 (65) - 24 (600)	Thru Class 2500	
	Controlled Closure Check Valve (See page 107)	2-1⁄2 (65) - 24 (600)	Thru Class 2500	
	Soft Seated Check Valve	2-1/2 (65) - 24 (600)	Thru Class 2500	
Actuators (U-stamped)	Stored Energy (Gas-Hydraulic)	A-100 Thru A-510	Thrusts from 20,000 to over 489,000 lbs.	
	Top Entry Ball Valves	1⁄2 (15) Thru 10 (250)	Thru Class 600	
1/4 Turn Valve	3-Piece Ball Valves	3/4 (20) Thru 10 (250)	Thru Class 300	
	Butterfly Valves	3 (80) Thru 20 (500)	Thru Class 600	


Note: See pages 5 and 10 for indicated figure numbers available for nuclear service.

Simulated line rupture test confirms closing speed of Edward main steam isolation valve against differential pressure of 1500 psi.

Edward and Anchor/Darling valves constructed for nuclear service can be offered for Code Class 1, 2 or 3.

Flowserve Forged and Cast Steel Valves for Nuclear Service

Edward Equiwedge gate valve with an Edward gas hydraulic actuator being prepared for shipment.

Flowserve Edward and Anchor/Darling have been serving the power generation and process industries with custom engineered valves since 1888.

As a specialist with more than 100 years of experience in the production of highspecification valves for critical services, we are uniquely qualified to serve the needs of the power generation and process industries worldwide.

From the beginning of commercial nuclear power production, Flowserve valves have been used successfully in many of the most difficult applications. The Shippingport plant went on line in 1957 with special size 18" Edward stainless steel tilting disc check and and Anchor/Darling 10" double-disc gate valves in its primary coolant system. It also incorporated numerous small Edward capped manual valves. Other "first generation" commercial nuclear plants are still in operation with a broad variety of Edward and Anchor/Darling forged and cast steel valves.

Through the evolution of the pressurized water reactor (PWR), the boiling water reactor (BWR) and even the liquid metal fast breeder reactors (LMFBR), Flowserve Flow Control has been involved in meeting the most difficult challenges. This experience in engineering, manufacturing and quality assurance provides an excellent basis for supplying superior valves for nuclear service — in new construction, retrofit and life extension work. A major Flowserve Edward Valves nuclear niche has been the main steam and feedwater isolation market (MSIVs and MFIVs). These safety-related valves must close rapidly, typically in three to five seconds, to prevent major leakage in the event of a pipe rupture. Special Edward Flite-Flow valves with air/ spring actuators were used in PWRs until the Edward Equiwedge gate valve and stored energy actuator were developed in the late 1970s. Edward Equiwedge MSIVs and MFIVs with stored energy actuators are now in service on three continents—in PWRs and in steam service in an LMFBR.

Other critical nuclear applications are served by Edward check and stop-check valves, some with special features. Flowserve provides comprehensive application engineering data (see Technical Section) to support these valves, helping to avoid many of the problems that have occurred with other check valves in nuclear power plants.

In addition, thousands of small Edward forged steel valves are widely used in many nuclear plant applications that demand high reliability. Some have handwheels, some have electric motor actuators and some have pneumatic actuators, but all are designed and built to nuclear standards. Univalves and bolted bonnet valves provide excellent service in most applications, and Hermavalves are available for applications where the risk of external leakage is unacceptable.

A major manufacturer of Section III Nuclear Valves, ½" and larger Flowserve Edward and Anchor/Darling offer the most complete line of valves developed for nuclear service where reliable operation, positive sealing, ease of maintenance and A.L.A.R.A. are prime considerations. Our valves are produced in the U.S.A. to an ISO 9001 certified quality program.

Flowserve Edward and Anchor/Darling smallbore valves are available to ASME Section III Class 1, 2, 3 or ANSI B16.34 requirements.

Flowserve Edward and Anchor/Darling valves are available with seating materials suitable for various applications. Where required, seat rings are firmly shouldered against the body and vacuum furnace brazed. This process gives a very precise seating surface to achieve extended service life. Seating surfaces are solid alloys that provide excellent wear and corrosion properties not possible with competitors' integral seat designs often seen in forged valves.

Hardface materials offered as a standard include non-cobalt NOREM, cobalt-chrome Stellite and various nickel-based alloys.

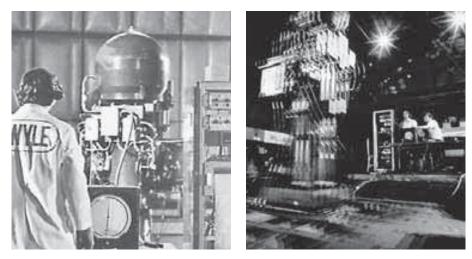
Since there were 50 years of Flowserve power plant valve experience before the first nuclear plants were built, we were well prepared for the new challenges of first-generation nuclear power plants. Now, with over 50 years of nuclear valve experience, Flowserve Edward and Anchor/Darling valves are even better prepared for the challenges of the future.

Edward and Anchor/Darling valves constructed for nuclear service can be offered for Code class 1, 2 or 3.

Checklist of Customer Information Required for Nuclear Valve Proposals

The following checklist is provided as a guide of important information required by the valve manufacturer to accurately quote equipment intended for nuclear service. By properly identifying this data, a more complete and specific proposal can be provided.

- · Certified design specifications.
- Nuclear code class.
- Applicable codes/standards and date of issue.
- · Estimated delivery requirements.
- Environmental conditions temperature, humidity, radiation, exposure to elements.
- Piping diagrams.
- Pipe size, material, wall thickness.
- · Piping forces transmitted to valve.
- Piping response spectrum to Design Basis Earthquake.
- Dimensional limitations of valve envelope.
- Physical orientation of valve horizontal, vertical, bonnet position.
- Special materials required.
- Special buttweld end requirements.
- · System design conditions pressure, temperature.
- Normal operating conditions pressure, temperature.
- Normal flow pounds per hour.
- Maximum flow pounds per hour.
- Allowable pressure drop through valve.
- Flow direction through valve.
- Active/non-active valve operational requirements emergency opening or closing, actuation time, differential pressures and flows during operation.
- Power sources air supply pressure (maximum and minimum) voltage supply (AC, DC), cycles, fluctuation.
- Actuator type desires.
- Safety related function.
- Qualification requirement.


Flowserve Edward Stored Energy Actuator

Unlike a safety-related motor operator, designed to open and close a valve upon being enabled by the control room, Flowserve Edward's Gas/Hydraulic – Stored Energy Actuator is primarily designed to rapidly close a Main Steam Isolation Valve or a Main Feed Water Valve in response to a seismic event, or other containment threat. Upon activation of the actuator, in response to such an event, the compressed nitrogen in the hemisphere at the top of the unit immediately closes the valve in as little as two (2) seconds. The system includes a hydraulic reservoir and pump either electrically driven or pneumatically driven. The pump is capable of recompressing the nitrogen into the storage hemisphere to reposition the valve in the open position; simultaneously, the actuator is reset to the ready position. This same mechanism is designed to allow the valve to be exercised (partial stroked) by operators and service technicians.

The Flowserve Edward Stored Energy Actuator is built in accordance with ASME Section VIII where required and is fully certified to the applicable IEEE environmental qualification standards. These Flowserve Edward Stored Energy Actuators are in active nuclear service throughout the world.

Contact Flowserve Inc. Flow Control for a listing of U.S. and international users.

Gas-Hydraulic Actuators for Fail-Safe Isolation Valves

Flowserve Edward gas-hydraulic actuator for large, fast-closing valves is subjected to seismic testing during rigorous qualification program to provide dependability of operation under the most adverse conditions.

Standard Features

- · Stored energy (pressurized nitrogen) integrally contained.
- · Hydraulic speed-control system ensures constant valve stroking speed regardless of stem load.
- · Fail-safe operation to either close or open valve within an adjustable range of 2 to 10 seconds.
- · Self-contained control system, fully manifolded.
- All safety-related functional components are duplicated for redundancy.
- · Exercise capability demonstrates operation of all safetyrelated components online.
- Qualified to applicable IEEE requirements.
- Actuators equipped with Edward IEEE-gualified AC or DC operated hydraulic solenoid valves.

Flowserve - Edward Actuator Designation

· Fire safe, non-toxic hydraulic fluid.

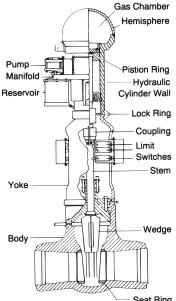


Diagram of Flowserve Edward Equiwedge gate valve and gas-hydraulic actuator assembly.

Seat Ring

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

	Units	A-100	A-180	A-230	A-260	A-290	A-330	A-510
Closing Thrust	lb.	21,000	63,000	90,000	130,000	160,000	205,000	489,000
Closing Thrust kN	kN	93	293	400	578	712	912	2175
Travel	in.	6.5	12	14	17.5	20.5	24	32
	mm	165	305	356	446	521	610	813
Maight (Maga)	lb.	720	1720	2270	2950	3940	5260	17,700
Weight (Mass)	kg	325	780	1030	1340	1790	2390	8030
Extension Time	sec.		3 – 10 SECONDS (ADJUSTABLE)					

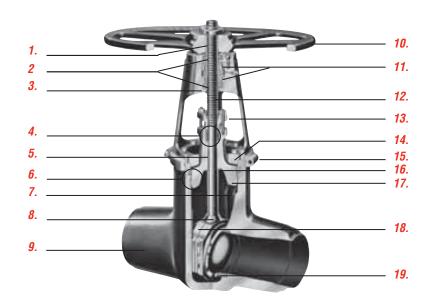
Values tabulated are "nominal." For special applications; otherwise, standard actuators may be modified for shorter or longer travel with corresponding effects on weight. Environmental temperature range of the application will influence thrust.

Main Steam and Main Feedwater Isolation Valves

Gas / Hydraulic Actuated Equiwedge Gate Valves

- Single stored energy system / redundant control systems.
- Standard features include:
 - Manifold-mounted hydraulic components
 - Off-line testing capabilities
 - Exercise stroke capabilities
 - Extended periods between maintenance
 - · No external hose or piping connections
- Similar in weight and smaller than pneumatic actuators.
- Consistent stroke times.
- Fluid filtration systems prevent particulate contamination of hydraulic fluid.
- Environmental qualification to IEEE-382, 323 and 344.
- ASME B16.41 and QME-1 functionally qualified.

Since 1985, over 80% of the world's MSIVs and MFIVs have been supplied by Flowserve!


Simple design and operating principle Extensive, proven track record Environmentally and functionally qualified valve and actuator Flowserve service, training and warranty No failures to perform safety-related function Over 8,000 service years of reliable operation <u>24</u>

Edward Gate Valves

Features and Description of Flowserve Edward Equiwedge[®] Gate Valves

For detailed description of the two-piece flexible wedge, see page 23.

- 1. Yoke bushing material has low coefficient of friction that substantially reduces torque and thread wear and eliminates galling.
- 2. Weather/Grease seals are provided to protect against environmental conditions.
- **3. Yoke** the yoke is designed for ready access to the packing chamber.
- **4. Packing and junk ring** utilizes flexible graphite packing material with anti-extrusion rings for optimum sealability and life.
- Extended bonnet design further separates the packing chamber from fluid flow area for longer packing life. Also provides accessible area for leakoff connections if required.
- 6. Composite pressure seal gasket preloaded, pressure energized design, for long, reliable service.
- Body guiding system holds the wedge halves together and absorbs thrust loads due to line flow. Integral hardfaced guide system components reduce friction and prevent galling for longer valve life.
- 8. Conical stem backseat Cone-on-cone design provides a reliable sealing geometry that operates over many valve cycles without leakage.
- **9. Body** rugged cast steel body provides maximum flow efficiency. Information on alternate materials can be obtained through your Flowserve representative.
- **10. Handwheel** spoke design provides more efficient transfer of load with minimum weight.

- 11. Tapered roller bearings on larger valves, tapered roller bearings reduce torque, carry the stem thrust and provide additional radial support for side loads imposed by handwheel or power actuator. Smaller size valves have needle roller bearings.
- **12. Stem** has ACME threads, is machined to a fine finish and is heat treated for improved strength and hardness to resist wear.
- Packing gland made of alloy steel, and retained against the stuffing box pressure by an easy-to-maintain stud and heavy hex nut assembly.
- **14. Bonnet retaining ring** ensures an effective, tight seal by pulling the bonnet and gasket together at the pressure seal.
- 15. Yoke lock ring permits easier field maintenance of upper structure without disturbing pressure-containing parts. Valves in smaller sizes utilize a wishbone yoke design. Class 600 valves utilize a bolted pressure seal bonnet.
- 16. Bonnet backseat especially hardfaced to ensure long-term sealability.
- **17. Hemispherical-type bonnet** reduces valve body height and provides weight saving. Hemispherical-type design results in better pressure distribution across the bonnet area.
- Two-piece wedge assembly allows each wedge half to flex and adjust independently to compensate for body distortions caused by thermal changes or pipe bending stresses. (see pg. C10)
- 19. Welded-in seat ring with hardfaced seat ensures better wear and longer valve life. Seat ring is welded into the valve body to prevent leakage.

<u>26</u>

Parts Specification List for Edward Gate Valves

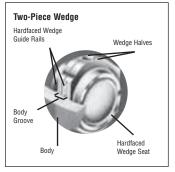
This is not a complete list. Construction and materials will vary between sizes and pressure classes and may be changed without notice. For a complete, accurate and itemized description of a particular valve, contact your Flowserve valves sales representative.

Description	ASME No.	ASME No.	ASME No.	ASME No.
Body/Bonnet*	SA-216	SA-216	SA-217	SA-351
Bouy/Boilliet	Grade WCB	Grade WCC	Grade WC9	Grade CF8M
Gate 2½-6	SA-732	SA-732	SA-732	SA-732
Gale 2 /2-0	Grade 21	Grade 21	Grade 21	Grade 21
Gate 8 and up*	SA-216	SA-216	SA-217	SA-351
	Grade WCB	Grade WCB	Grade WC9	Grade CF8M
Stem	A-182	A-182	A-565	A-638
Stem	Grade F6 CL4	Grade F6 CL4	Grade 616 HT	Grade 660 T2
Yoke Bushing	B-148	B-148	B-148	B-148
toke busiling	Alloy 95400	Alloy 95400	Alloy 95400	Alloy 95400
Packing Rings		Flexible Graphite inner rings ar	nd suitable anti-extrusion rings.	
Inch Binne	AISI 1117	AISI 1117	AISI 1117	A-182
Junk Rings	Cad. Plated	Cad. Plated	Cad. Plated	Grade F316/Stellite I.D.
Pressure Seal Gasket**		Composite Press	sure Seal Gasket.	
	_			
Spacer Ring	A-668 Grade 4140	A-668 Grade 4140	A-668 Grade 4140	A-182
opusor mig	MnPO ₄ Plated	MnPO ₄ Plated	MnPO₄ Plated	Grade F6 CL4
		A-182		A-638
Gasket Retainer	A-182 Grade F6 CL4	Grade F6 CL4	A-565 Grade 616 HT	Grade 660 T2
	A-515	A-515	A-515	A-515
Bonnet Retainer	Grade 70	Grade 70	Grade 70	Grade 70
	A-193	A-193	A-193	A-193
Bonnet Retainer Studs	Grade B7	Grade B7	Grade B7	Grade B7
	A-194	A-194	A-194	A-194
Bonnet Retainer Nuts	Grade 2H	Grade 2H	Grade 2H	Grade 2H
				A-148
Gland	A-148	A-148	A-148	
	Grade 90-60	Grade 90-60	Grade 90-60 A-193	Grade 90-60/Chrome Plated A-193
Gland Studs	A-193 Orada DZ(Cad. Diated	A-193 Crede DZ/Cod Distant		
	Grade B7/Cad. Plated	Grade B7/Cad. Plated	Grade B7/Cad. Plated	Grade B7/Cad. Plated
Gland Nuts	A-194 Crade Oll/Cad. Distad	A-194 Crada OLL/Cod Distant	A-194	A-194 Crede Oll/Cod Distort
	Grade 2H/Cad. Plated	Grade 2H/Cad. Plated	Grade 2H/Cad. Plated	Grade 2H/Cad. Plated
Yoke	A-216 Grade WCB	A-216 Grade WCB	A-216 Grade WCB	A-216 Grade WCB
Yoke Lock Ring	A-216	A-216	A-216	A-216
	Grade WCB	Grade WCB	Grade WCB	Grade WCB
Yoke Lock Ring Studs	A-193	A-193 Orada PZ	A-193 Crode D7	A-193
-	Grade B7	Grade B7	Grade B7	Grade B7
Yoke Lock Ring Nuts	A-194	A-194	A-194	A-194
•	Grade 2H	Grade 2H	Grade 2H	Grade 2H
Handwheel	A-126	A-126	A-126	A-126
	Class A	Class A	Class A	Class A

*Hardfaced wedge guide rails and seating surfaces. **Size 2½ through 6, Class 600 & Size 2½ through 4, Class 900 also available with bolted bonnet/flat gasket. ***Use A-368 Grade 660 T2 for applications over 1100°F

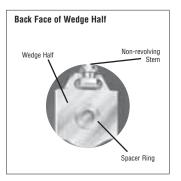
Features and Description of Flowserve Edward Equiwedge[®] Gate Valves

Unique Two-Piece Flexible Wedge


Wedging action provides tight seat sealing, even at low differential pressures. Wedge guiding by grooves in body minimizes seat wear and damage, since seating surfaces of wedge and body are in contact over less than 5% of total travel. Two separate, flexible wedge halves are free to align with seats even when they are tilted or rotated due to thermal effects or piping loads. Resistance to thermal binding ensures opening with a torque or load less than design closing load.

Wedge guide area and strength provide capability to support high differential pressures with valve partially open, so Equiwedge gate valves can be opened or closed under "blowdown" conditions. Bypasses are not required if full differential is specified for actuator sizing.

Center Cavity Overpressurization


Some valve designs are capable of sealing simultaneously against a pressure differential between an internal cavity of the valve and the adjacent pipe in both directions. Doubleseated gate valves, including Equiwedge, are examples of such a design. In fact, seat joint integrity for these valves is tested in the factory by pressurizing the center cavity and simultaneously examining each seat. However, if a fluid is entrapped in such a valve while closed, and then subsequently heated, a dangerous rise in pressure can result, thus leading to pressure boundary failure.

Both ASME B16.34 (Valves - Flanged, Threaded and Welding End), para 2.3.3 and ASME B31.1 (Pressure Piping Code), para 107.1(c), recognize this situation and require that the Purchaser shall provide means in design, installation and/or operation to ensure that the pressure in the valve shall not exceed the rated pressure for the attained temperature. Therefore, if deemed necessary by the Purchaser, and so specified in the purchase order, Flowserve Edward Valves can provide an equalizer system (internal or external) that will relieve this trapped fluid to the upstream piping or a relief valve that will exhaust excessive pressure to some other specified area. It should be understood that an internal or external equalizer will change a basically bidirectional gate valve to a

Figure 1

The outstanding design feature of the Equiwedge gate valve is unique two-piece wedge that permits maximum independence and flexibility for good sealability and freedom from sticking.

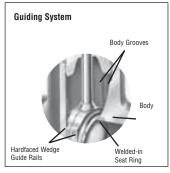
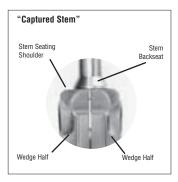


Figure 3

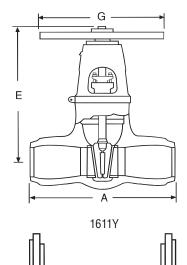
Wedge halves are separated the proper amount by a spacer ring which provides controlled deflection from stem loading. Use of a space and weight-saving "captured stem" (shown here and in Figure 4) is possible because of the two-piece wedge design.


design with fully effective seat sealing in only one direction. The equalizer bypasses the upstream seat and would allow leakage by that seat if the pressure should be reversed. The "downstream" seat would become the "upstream" seat with pressure reversed; the wedging action provided by stem load provides good upstream seat sealing at low to moderate pressures, but leakage could be excessive at high pressures.

Excessive pressure trapped in the center cavity of a gate valve can also produce

Figure 2

The body groove extends high in the body neck region so that in the open position the wedge assembly is both trapped and fully guided. Body grooves are hardfaced for critical service valves.


Figure 4

The Equiwedge two-piece wedge design allows the use of a space and weight-saving "captured stem."

"pressure locking"—a condition that can make opening difficult or impossible. Either an internal or an external equalizer will prevent pressure locking. However, a relief valve may allow the center cavity pressure to be higher than either the upstream or downstream pressure, and this can allow pressure locking to occur. The Flowserve Edward valves' unique ACCEV (Automation Center Cavity Equalizing Valve) can alleviate this problem. Refer to page 189 for additional information.

<u>28</u>

С

Standard Features

- Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- Pressure-seal bonnet OS & Y
- Integral Stellite seats and backseat
- Two-piece body-guided wedge
- 13% chromium stainless steel stem
- · Asbestos-free graphitic packing
- · Composite pressure-seal gasket
- Available in standard or venturi pattern
- · Yoke bushing thrust bearings

Dimensions – Equiwedge Gate

Pressure Class 600 (PN 110)

Fig.	No.	Tuno	Ends	Bonnet	NPS (DN)	
STD CL	SPL CL	Type Ends		Donnet	NF3 (DN)	
1611*	—	Equiwedge Gate	Flanged	Pressure Seal	2½ (65) thru 28 (700)	
1611Y	1711Y	Equiwedge Gate	Butt Weld	Pressure Seal	272 (05) till u 20 (700)	
1611BY	1711BY	Venturi Pattern	Butt Weld	Pressure Seal	9 (200) thru 22 (800)	
	Equiwedge Gate				8 (200) thru 32 (800)	

* Flanges to size 24 only.

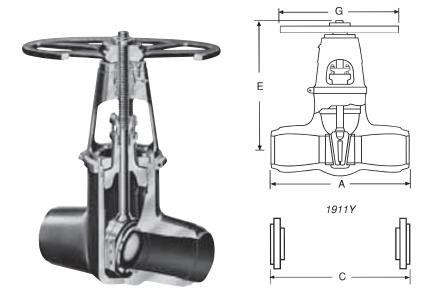
NPS 21/2 Figure No. 1611/1611Y, 1711Y/1711BY DN A - End to End (Welding) C - Face to Face (Flanged) 22.25 22.25 25.5 31.75 39.75 58.5 E - Center to Top, (Open) G - Handwheel Diameter Weight (Welding)

* E, G, and other dimensions and information supplied upon request.

Refer to page 27 for materials of construction.

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Dimensions – Equiwedge (Gate (con	<i>tinued)</i>			Color			es and pounds and kilograms
Figure No. 1611/1611V 1711V	NPS	16	18	20	22	24	26	28
Figure No. 1611/1611Y, 1711Y	DN	400	450	500	550	600	650	700
A End to End (Malding)		39	43	47	51	55	57	61
A - End to End (Welding)		991	1092	1194	1295	1397	1448	1549
		39	43	47	51	55	57	61
C - Face to Face (Flanged)		991	1092	1194	1295	1397	1448	1549
E Contor to Ton (Onon)		67	76	82.75	89	96	101	110.5
E - Center to Top, (Open)		1702	1930	2102	2261	2438	2565	2807
C Handwhaal Diamatar		36	36	36	48	48	48	48
G - Handwheel Diameter		914	914	914	1219	1219	1219	1219
Noight (Molding)		2950	3600	5000	5700	6500	8000	10,000
Weight (Welding)		1338	1633	2268	2585	2948	3628	4535


* E, G and other dimensions and information supplied upon request.

Dimensions – Equiwedge Gate Venturi Pattern

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 1611DV 1711DV	NPS	8x6x8	10x8x10	12x10x12	14x12x14	16x14x16	18x16x18
Figure No. 1611BY, 1711BY	DN	200	250	300	350	400	450
A - End to End (Welding)		18	23	28	32	35	39
A - Ellu to Ellu (Welding)	[457	584	711	813	889	991
E Contar to Ton (Onon)		31.75	39.75	48	54	58.5	67
E - Center to Top, (Open)		806	1010	1219	1372	1486	1702
G - Handwheel Diameter		24	24	30	30	36	36
G - Halluwileer Dialiteter	ſ	610	610	762	762	914	914
Weight (Welding)		372	610	1114	1623	2345	2950
		169	277	506	738	1066	1338

Figure No. 1611BY, 1711BY	NPS	20x18x20	22x20x22	24x20x24	26x22x26	28x24x28	30x26x30	32x28x32
FIGURE NO. TOTIDT, TATIDT	DN	500	550	600	650	700	750	800
A - End to End (Welding)		43	47	47	51	55	57	61
		1092	1194	1194	1295	1397	1448	1549
E - Center to Top, (Open)		76	82.75	82.75	89	96	101	110.5
E - Center to Top, (Open)		1930	2102	2102	2261	2438	2565	2807
C Handwhael Diameter		36	36	48	48	48	48	48
G - Handwheel Diameter		914	914	1219	1219	1219	1219	1219
Waight (Walding)		3600	5000	5700	6500	7000	8500	10,500
Weight (Welding)		1633	2268	2585	2948	3175	3855	4762

Standard Features

- Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- Pressure-seal bonnet, OS and Y
- Integral Stellite seat, disc and backseat
- Two-piece body-guided wedge
- 13% chromium stainless steel stem
- Asbestos-free graphitic packing
- Available in standard or venturi pattern
- · Yoke bushing thrust bearings
- Composite pressure seal gasket

Dimensions – Equiwedge Gate

Pressure Class 900 (PN 150)

Fig	. No.	Tuno	Ends	Bonnet	NPS (DN)		
STD CL	L SPL CL Type		Ellus	Dunnet	NF3 (DN)		
1911	—	Equiwedge Gate	Flanged	Pressure-Seal	2½ (65) thru 28 (700)		
1911Y	14311Y	Equiwedge Gate	Butt Weld	Pressure-Seal	2 /2 (03) tillu 20 (700)		
1911BY	14311BY	Venturi Pattern Equiwedge Gate	Butt Weld	Pressure-Seal	8 (200) thru 32 (800)		

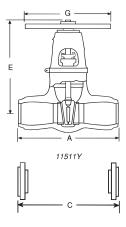
Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 1011/1011V 14211V	NPS	21⁄2	3	4	6	8	10	12	14
Figure No. 1911/1911Y, 14311Y	DN	65	80	100	150	200	250	300	350
End to End (Walding)		12	12	14	20	26	31	36	39
A - End to End (Welding)		305	305	356	508	660	787	914	991
C Face to Face (Flanged)		16.5	15	18	24	29	33	38	40.5
C - Face to Face (Flanged)		419	381	457	610	737	838	965	1029
E Contar to Top (Open)		21.25	21.25	24.5	33.5	40	46.75	54.5	59
E - Center to Top (Open)		540	540	622	851	1016	1187	1384	1499
C Handwhaal Diamator		14	14	18	24	24	36	36	36
G - Handwheel Diameter		356	356	457	610	610	914	914	914
Weight (Welding)		95	125	165	380	690	1523	2118	2805
		43	57	75	172	313	692	963	1275

Dimensions – Equiwedge Gate (continued)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 1911/1911Y, 14311Y	NPS	16	18	20	22	24	26	28
Figure No. 1911/19111, 143111	DN	400	450	500	550	600	650	700
A End to End (Molding)		43	48	52	57	61	64	68
A - End to End (Welding)		1092	1291	1321	1448	1549	1626	1727
C Ease to Ease (Elanged)		44.5	48	52	57	61	Available U	oon Request
C - Face to Face (Flanged)		1130	1291	1321	1448	1549	Available U	Joii nequesi
E - Center to Top (Open)		68	73.75	82	89.25	95	102	109
E - Center to Top (Open)		1727	1873	2083	2267	2413	2591	2769
G - Handwheel Diameter		36	36	48	48	48	60	60
- Handwheel Diameter		914	914	1219	1219	1219	1524	1524
Weight (Welding)		4150	4300	5800	7500	9600	12,000	
		1882	1950	2631	3402	4355	5443	


Dimensions – Equiwedge Gate Venturi Pattern

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 1911BY, 14311BY	NPS	8x6x8	10x8x10	12x10x12	14x12x14	16x14x16	18x16x18
Figure No. 1911b1, 14511b1	DN	200	250	300	350	400	450
A - End to End (Welding)		20	26	31	36	39	43
		508	660	787	914	991	1092
E Contor to Ton (Onon)		33.5	40	46.75	54.5	59	68
E - Center to Top (Open)		851	1016	1187	1384	1499	1727
C Handwhaal Diamatar		24	24	36	36	36	36
G - Handwheel Diameter		610	610	914	914	914	914
Weight (Welding)		530	891	1523	2118	2805	4150
		241	405	692	963	1275	1882

Figure No. 1911BY, 14311BY	NPS	20x18x20	22x20x22	24x20x24	26x22x26	28x24x28	30x26x30	32x28x32
Figure No. 1911b1, 14311b1	DN	500	550	600	650	700	750	800
A End to End (Walding)		48	52	52	57	61	64	68
A - End to End (Welding)		1219	1321	1321	1448	1549	1626	1727
E - Center to Top (Open)		73.75	82	82	89.25	95	102	109
		1873	2083	2083	2267	2413	95 102 413 2591 48 60	2769
C Handwhaal Diamatar		36	48	48	48	48	60	60
G - Handwheel Diameter		914	1219	1219	1219	1219	1524	1524
Weight (Welding)		4500	6970	7200	8000	10,000	12,500	15,000
Weight (Welding)		2041	3162	3266	3629	4536	5670	6804

Standard Features

- Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- Pressure-seal bonnet, OS & Y
- Integral Stellite seats and backseat
- Two-piece body-guided wedge
- 13% chromium stainless steel stem
- Asbestos-free graphitic packing
- Available in standard or venturi pattern
- · Yoke bushing thrust bearings

Dimensions – Equiwedge Gate

Pressure Class 1500 (PN 260)

Fig.	No.	Tuno	Ends	NPS (DN)		
STD CL	SPL CL	Туре	Ellus			
11511	—	Equiwedge Gate	Flanged*	2½ (65) thru 24 (600)		
11511Y	12011Y	Equiwedge Gate	Butt Weld	2 /2 (05) till u 24 (000)		
11511BY	12011BY	Venturi Pattern Equiwedge Gate	Butt Weld	8 (200) thru 28 (700)		

* Optional weld-on flanges.

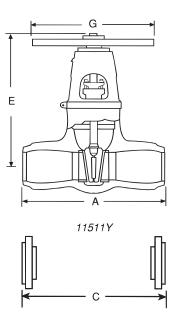

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 11511/11511Y, 12011Y	NPS	21/2	3	4	6	8	10	12
FIGURE NO. 11511/115111, 120111	DN	65	80	100	150	200	250	300
A - End to End (Welding)		12	12	16	22	28	34	39
A - Ella to Ella (Weiding)		305	305	406	559	711	864	991
C - Face to Face (Flanged)		16.5	18.5	21.5	27.75	32.75	39	44.5
G - Tace to Tace (Tranged)		419	470	546	705	832	991	1130
E - Center to Top (Open)		21.25	21.25	24.25	31.5	40	48.25	55.25
E - Center to Top (Open)		540	540	616	800	1016	1226	1403
G - Handwheel Diameter		14	14	18	24	36	36	36
G - Handwheel Diameter		356	356	457	610	914	914	914
Weight (Welding)		125	125	190	490	675	1730	2725
		57	57	86	222	306	785	1236

Figure No. 11511/11511Y, 12011Y	NPS	14	16	18	20	22	24
Figure No. 11511/115111, 120111	DN	350	400	450	500	550	600
A End to End (Wolding)		42	47	53	58	67	76.5
A - End to End (Welding)		1067	1194	1346	1473	1702	1943
C Ease to Ease (Flanged)		49.5	54.5	60.5	65.5	71	76.5
C - Face to Face (Flanged)		1257	1384	1537	1664	1803	1943
E - Center to Top (Open)		61	68.75	73.75	80	86.75	93.5
		1549	1746	1873	2032	2203	2375
C Handwhaal Diamatar		48	48	48	60	60	60
G - Handwheel Diameter		1219	1219	1219	1524	1524	1524
Weight (Welding)		3660	4450	6000	8000	10,500	13,000
		1660	2019	2722	3629	4763	5897

Dimensions – Equiwedge Gate Venturi Pattern

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

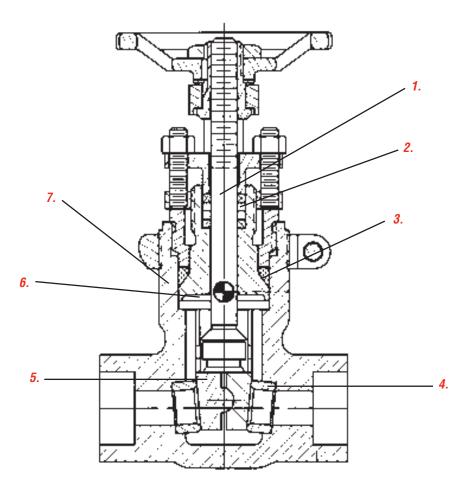

Figure No. 11E11DV 12011DV	NPS	8x6x8	10x8x10	12x10x12	14x12x14	16x14x16	18x16x18
Figure No. 11511BY, 12011BY	DN	200	250	300	350	400	450
A - End to End (Welding)		22	28	34	39	42	47
		559	711	864	991	1067	1194
E Contar to Top (Open)		31.5	40	48.25	55.25	61	68.75
E - Center to Top (Open)		800	1016	1226	1403	1549	1746
G - Handwheel Diameter		24	36	36	36	48	48
G - Halluwileer Dialiteter		610	914	914	914	1219	1219
Weight (Welding)		490	1082	1690	2725	3600	4600
		222	491	767	1236	1633	2087

Figure No. 11511BY, 12011BY	NPS	20x18x20	22x20x22	24x20x24	26x22x26	28x24x28
	DN	500	550	600	650	700
A - End to End (Welding)		53	58	58	67	76.5
		1346	1473	1473	1702	1943
E - Center to Top (Open)		73.75	80	80	86.75	93.5
		1873	2032	2032	2203	2375
G - Handwheel Diameter		48	60	60	60	60
		1219	1524	1524	1524	1524
Weight (Welding)		6200	8200	8,500	11,000	13,500
Weight (Welding)		2812	3720	3855	4990	6124

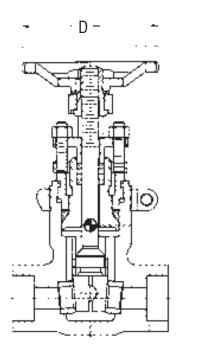
Anchor/Darling Gate Valves

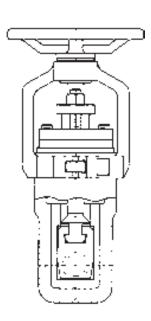
Features and Description of Anchor/Darling 800 Series Gate Valves

- Oversized stem provides stronger disc-to-stem connection and reduces packing wear through increased stiffness.
- 2. Graphite stem packing provides better sealing and longer packing life.
- **3. ADVanseal pressure** sealing system eliminates leakage, reduces maintenance and is more cost effective.
- **4. Seat ring** is solid, hardened material (Stellite or non-Cobalt) and is fully shouldered and brazed in place.
- 5. Two piece split wedge is body guided, self aligning and solid, hardened material (Stellite or non-Cobalt).
- 6. Machined backseat provides additional packing protection.
- Investment cast body produces a smooth flow transition, minimizes flow turbulence resulting in higher Cv's. Pressure seal bonnet eliminates leakage.

Parts Specification List for Anchor/Darling 800 Series Gate Valves

Standard Features


- Available body material SA216-WCB SA351-CF8M
- · Investment cast for smooth flow
- Rising stem design


Anchor/Darling 800 Series gate valves for nuclear service are normally furnished in Class 800. Other interpolated pressure classes are also available on application. Parts shown are not applicable to all 800 Series valves. Construction and materials for nuclear valves may vary depending upon customer design specifications. For a complete, accurate and itemized description of a particular valve, contact your local Flowserve valves sales representative.

Description	ASME/ASTM No.	ASME/ASTM No.		
Body	SA216-WCB	SA351-CF8M		
Bonnet	SA479-316	SA479-316		
Stem	A564-630-1075	A564-630-1075		
Disc	SA564-XM13-1100	SA564-XM13-1100		
Seat	NOREM or Stellite	NOREM or Stellite		
End Rings	Braided Graphite	Braided Graphite		
Packing Rings	Grafoil	Grafoil		
Gland Retainer	A564-630-1075	A564-630-1075		
Gland Adjusting Screw	AISI-300	AISI-300		
Gland Flange	A479-316	A479-316		
Yoke	A351-CF8M	A351-CF8M		
Yoke Sleeve	B21-C464-H02	B21-C464-H02		
Yoke Bolt	A193-B7	A193-B7		
Yoke Bolt Nut	A194-2H	A194-2H		
Handwheel	A351-CF8M	A351-CF8M		
Handwheel Nut	Carbon Steel	Carbon Steel		
Gasket Retainer	SA564-630-1075	SA564-630-1075		

800 Series Stop Valves, Class 800

Pressure Class 800 (PN 130)

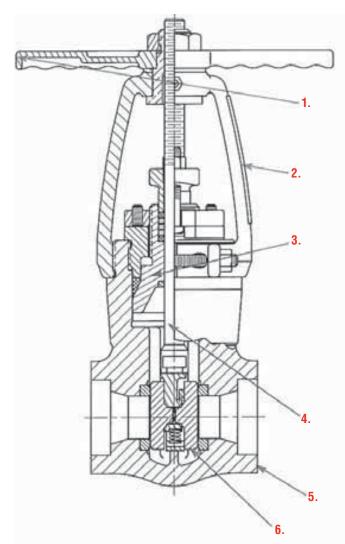
L

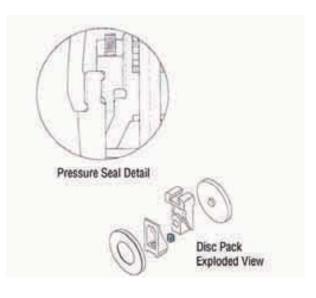
F

G

Fig. No.	Туре	Ends	NPS <mark>(DN)</mark>
USW90S	Gate	Socket Weld	½ (15) thru 2 (50)
USW90U	Gate	Butt Weld	½ (15) thru 2 (50)

Black numerals are in inches and pounds


Features


- Pressure Class 800 (Intermediate)
- Investment cast body
- Split wedge, body-guided disc
- · Non-cobalt seat rings; standard
- · Oversized non-rotating stem
- ADVanseal[®] pressure seal
- · Graphite stem packing
- · Machined backseat

Dimensions – Gate

Dimensions – Gate	I numerals are in milli	meters and kilogran				
	NPS	1/2	3⁄4	1	1½	2
Figure No. USW90S/USW90U	DN	15	20	25	40	50
٨		3.3	3.6	4.5	4.8	5.1
А		84	91	114	122	130
D		3.0	3.0	4.0	6.0	6.0
		76	76	102	152	152
г		5.7	5.7	6.9	8.5	9.8
F		145	145	175	216	249
C		6.3	6.3	7.7	10.0	11.4
G		160	160	196	254	290
Weight Approx (lbs.)		4.3	4.5	7.5	14.5	18.5
		2.0	2.0	3.4	6.6	8.4
Cv		15	28	50	120	175

Features and Description of 1888 Series Double-Disc Gate Valve

- 1. Conversion from manual to motor-actuated valve does not require stem or bonnet change. Simply remove T-handle assembly and replace yoke.
- 2. Stainless steel yoke provides a non-corroding protector for the stem and gland area in the harshest environments
- 3. Pressure seal bonnet design allows easy access to valve internals while keeping radiation exposure to a minimum. A formed graphite gasket creates an extremely tight fit between the body and bonnet, while enhanced flexibility

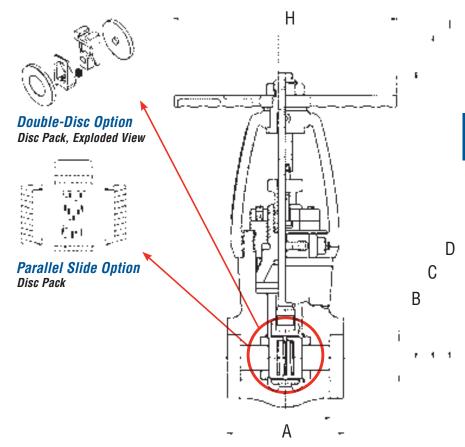
and uniformity prohibit unacceptable body-to-bonnet leakage caused by minor marring in seal surfaces. Lower cost, easier reassembly, improved longevity and proven service in high-pressure nuclear and fossil generating-applications.

- 4. T-Head design stem provides positive backseat sealing.
- 5. Rugged, low profile, one-piece body with high Cv values and low center of gravity is designed to avoid distortion of internal parts due to piping loads and stresses.
- 6. Discs with uniform hardness and ample reserve margin for lapping or machining, resulting in greater integrity and longevity. Discs are flat; no critical angle to maintain or restore. Discs are trunion mounted and rotate during operation, resulting in even wear. Flat surfaces means no critical angle to maintain or restore.

Parts Specification List for Anchor/Darling 1888 Series Double-Disc Gate Valves

Standard Features

Available body material


SA216-WCB SA351-CF8M

- · Investment cast for smooth flow
- · Rising stem design

Anchor/Darling 1888 Series gate valves for nuclear service are normally furnished in Class 1888. Other interpolated pressure classes are also available on application. Parts shown are not applicable to all 1888 Series valves. Construction and materials for nuclear valves may vary depending upon customer design specifications. For a complete, accurate and itemized description of a particular valve, contact your local Flowserve valves sales representative.

Description	ASME/ASTM No.	ASME/ASTM No.
Body	SA216-WCB	SA351-CF8M
Bonnet	SA105	SA182-F316
Stem	A564-630-1075	A564-630-1075
Disc	NOREM	NOREM
Body Seat	NOREM	NOREM
End Rings	Braided Graphite	Braided Graphite
Packing Rings	Grafoil	Grafoil
Gland	A351-CF8M	A351-CF8M
Gland Bolts	A193-B7	A564-630-1100
Yoke	A351-CF8M	A351-CF8M
Yoke Sleeve	B21-C464-H02	B21-C464-H02
Yoke Bolt	A574	A574
Yoke Bolt Nut	A194-2H	A194-2H
Handle	A351-CF8M	A351-CF8M
Stem Nut	AISI 316	AISI 316

Series 1888 Stop Valves, Class 1888

Features

- Ease of maintenance
- Uniform seat wear
- Rapid closure
- · Critical surfaces hardened with non-cobalt materials
- Versatile actuator application
- No critical angles to maintain

Dimensions – Gate

Pressure Class 1888 (PN 325)

Fig. No.	Туре	Ends	NPS (DN)
TDD15S	Double-disc Gate	Socket Weld	³ ⁄4 (20) thru 2 (50)
TDD15U	Double-disc Gate	Butt Weld	³ ⁄4 (20) thru 2 (50)

Figure No. TDD15S/TDD15U	NPS	3⁄4	1	11/4	1½	2
Figure No. 100155/100150	DN	20	25	30	40	50
٨		4.5	4.5	4.5	5.3	5.3
A		114	114	114	135	135
В		12.7	12.7	12.7	12.9	12.9
D		323	323	323	328	328
0		14.1	14.1	14.1	14.8	14.8
6		358	358	358	376	376
Н		10.0	10.0	10.0	10.0	10.0
п		254	254	254	254	254
Weight Approx (lbs)		27	27	27	36	36
Weight Approx (lbs.)		12.2	12.2	12.2	16.3	16.3
Cv		27	51	35	135	82

Refer to page 40 for materials of construction.

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

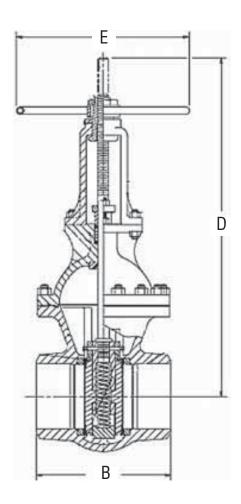
Features and Description of Anchor/Darling Double-Disc Gate Valves

- Uniform Seat Wear
- Low-Pressure Sealing
- Between-Seat Sealing
- Reliable Operation
- Versatile Actuator Application
- Critical Surfaces Hardfaced for Long Wear
- Rapid Closure
- Ease of Maintenance

Reliable Under the Toughest Conditions

Flowserve Anchor/Darling double-disc gate valves have been designed to provide reliable operation under the most severe service conditions.

This unique design will provide reliable operation when subjected to large pipe


nozzle loadings, rapid closure and repeated cycling. Extreme temperatures, gross thermal transients, high and low differential pressures, dirty and dual phase fluids have been considered in the development of the double-disc gate valve design. Flowserve regularly supplies valves from 1/2" to 54" in diameter and 150 to 4500 psi pressure ratings in carbon steel and a wide range of special alloys. Seating surfaces are normally Stellite but other materials can be supplied depending on the application.

Parts Specification List for Anchor/Darling Double-Disc Gate Valves

This is not a complete list. Construction and materials will vary between sizes and pressure classes and may be changed without notice. For a complete, accurate and itemized description of a particular valve, contact your Flowserve valves sales representative.

Description	ASME No.	ASME No.
Body/Bonnet*	SA-216	SA-351
bouy/bonnet	Grade WCB	Grade CF8
Discs	SA-105	SA-182
DISCS	5A-105	Grade F304
Stem	A-582	A-564
Stelli	Grade 416T	Grade 630-1075
Pressure Seal Gasket**	Composite Pres	sure Seal Gasket.
Bonnet Studs	A-193	A-193
סטוווכו סומתפ	Grade B7	Grade B7
Bonnet Nuts	A-194	A-194
Dound I Mars	Grade 2H	Grade 2H
Gland	A-582	A-479
ulallu	Grade 416T	Grade 304
Gland Studs	A-193	A-193
	Grade B7	Grade B7
Gland Nuts	A-194	A-194
	Grade 2H	Grade 2H
Yoke	A-216	A-216
IUKG	Grade WCB	Grade WCB
Yoke Lock Ring	A-515	A-515
TURE LUCK MINY	Grade 70	Grade 70
Yoke Lock Ring Studs	A-193	A-193
TOKE LOCK MINY SILUS	Grade B7	Grade B7
Yoke Lock Ring Nuts	A-194	A-194
TURE LUCK MINY NUIS	Grade 2H	Grade 2H
Handwheel	A-53	A-53
וומוועשווככו	Class SB	Class SB

Black numerals are in inches and pounds

Colored numerals are in millimeters and kilograms

Features

- Carbon, stainless or special alloys
- Bolted bonnet
- · Available Stellite seat, disc and backseat
- Seat-guided disc
- Various combinations of seat and stem material
- Uniform distribution of sealing pressure

Dimensions – Double-Disc

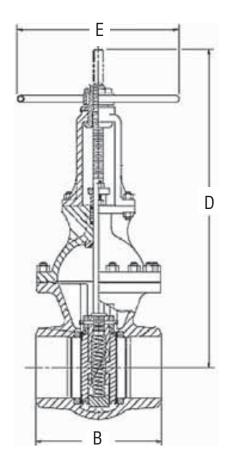
Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)
BDD10U	Double-disc Gate	Butt Weld	2½ (65) thru 24 (600)
BDD10C	Double-disc Gate	Flanged	2½ (65) thru 24 (600)

Figure No. BDD10U/B Weight Ap 10,425 12,925 17,375 22,450 28,225 41,725 375 550 1025 2425 4500 7150

Refer to page 43 for materials of construction.

В


D

Е

Cv

0.	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
BDD10C	DN	65	80	100	150	200	250	300	350	400	450	500	600
		9.5	11.1	12.0	15.9	16.5	18.0	19.8	22.5	24.0	26.0	28.0	32.0
		241	282	305	404	419	457	503	572	610	660	711	813
		23.0	25.0	31.0	41.0	46.0	54.0	63.0	67.0	74.0	81.0	90.0	104.0
		584	635	787	1,041	1,168	1,372	1,600	1,702	1,880	2,057	2,286	2,642
		8.0	10.0	10.0	14.0	20.0	12.0	12.0	12.0	12.0	18.0	18.0	18.0
		203	254	254	356	508	305	305	305	305	457	457	457
nnroy (lhe	<u>`</u>	100	195	300	450	665	895	975	1350	1640	1930	2350	2985
pprox (lbs.	'	45.4	88.4	136.1	204.1	301.6	406	442.3	612.4	743.9	875.4	1,066	1,354

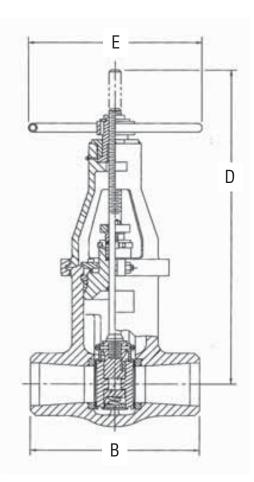
Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

Standard Features

- Carbon, stainless or special alloys
- Bolted bonnet
- Available Stellite seat, disc and backseat
- · Seat-guided disc
- Various combinations of seat and stem material
- Uniform distribution of sealing pressure

Dimensions – Double-Disc

Pressure Class 300 (PN 50)


Fig. No.	Туре	Ends	NPS (DN)
CDD10U	Double-disc Gate	Butt Weld	2½ (65) thru 24 (600)
CDD10C	Double-disc Gate	Flanged	2½ (65) thru 24 (600)

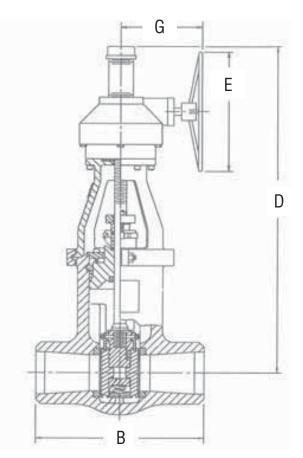
	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. CDD10U/CDD10C	DN	65	80	100	150	200	250	300	350	400	450	500	600
		9.5	11.1	12	15.9	16.5	18	19.8	30	33	36	39	45
В		241	282	305	404	419	457	503	762	838	914	991	1,143
D		24	26	32	41	51	58	66	70	76	83	94	105
D		610	660	813	1,041	1,295	1,473	1,676	1,778	1,930	2,108	2,388	2,667
E		8	10	12	20	12	12	12	12	12	18	18	18
E		203	254	305	508	305	305	305	305	305	457	457	457
Weight Approx (lbs.)		100	195	300	450	800	1,055	1,260	1,550	2,150	2,890	3,350	5,580
		45.4	88.5	136.1	204.1	362.9	478.5	571.5	703.1	975.2	1,310.9	1,519.6	2,531.1
Cv		375	550	1,025	2,425	4,500	7,150	10,425	12,925	17,375	21,800	27,500	40,825

Refer to page 43 for materials of construction.

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Standard Features

- Carbon, stainless or special alloys
- Bolted bonnet or pressure seal
- Available Stellite seat, disc and backseat
- Seat-guided disc
- · Various combinations of seat and stem material
- Uniform distribution of sealing pressure


Dimensions – Double-Disc

Pressure Class 600 (PN 110)

Fig. No.	Bonnet	Туре	Ends	NPS (DN)
EDD10U	Bolted Bonnet	Double-disc Gate	Butt Weld	2½ (65) thru 24 (600)
EDD10C	Bolted Bonnet	Double-disc Gate	Flanged	2½ (65) thru 24 (600)
EDD15U	Pressure Seal	Double-disc Gate	Butt Weld	2½ (65) thru 24 (600)
EDD15C	Pressure Seal	Double-disc Gate	Flanged	2½ (65) thru 24 (600)

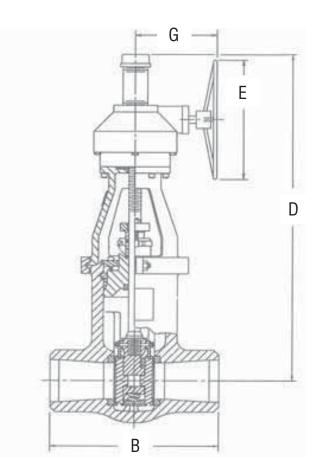
Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. EDD10U/EDD10C,	NPS	2½	3	4	6	8	10	12	14	16	18	20	24
EDD15U/EDD15C		65	80	100	150	200	250	300	350	400	450	500	600
D		8.5	10	12	18	23	28	32	35	39	43	47	55
В		216	254	305	457	584	711	813	889	991	1,092	1,194	1,397
D		22	27	33	42	51	57	68	72	79	87	99	111
D		559	686	838	1,067	1,295	1,448	1,729	1,829	2,007	2,210	2,515	2,819
E		10	12	14	20	12	12	12	12	18	18	18	24
E		245	305	356	508	305	305	305	305	457	457	457	610
Weight Approx (lbs.)		85	140	225	450	940	1,185	1,575	2,160	2,795	3,525	5,575	7,750
Weight Approx (lbs.)		38.6	63.5	102.0	204.1	426.4	537.5	714.4	979.8	1,267.8	1,599.0	2,528.8	3,515.4
Cv		375	550	1,025	2,375	4,225	6,625	9,850	12,025	15,900	20,100	24,900	36,525

Standard Features

- Carbon, stainless or special alloys
- Pressure seal
- Available Stellite seat, disc and backseat
- Seat-guided disc
- Various combinations of seat and stem material
- Uniform distribution of sealing pressure

Pressure Class 900 (PN 150)


Fig. No.	Туре	Ends	NPS (DN)
FDD15U	Double-disc Gate	Butt Weld	2½ (65) thru 24 (600)
FDD15C	Double-disc Gate	Flanged	2½ (65) thru 24 (600)

Dimensions – Double-Disc

Black numerals are in inches and pounds
Colored numerals are in millimeters and kilograms

Figure No. EDD1511/EDD150		21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. FDD15U/FDD15C	DN	65	80	100	150	200	250	300	350	400	450	500	600
В		10	12	14	20	26	31	36	39	43	48	50	59
В		254	305	356	508	660	787	914	991	1,092	1,219	1,270	1,499
D		26	28	33	43	52	61	67	73	84	91	101	115
		660	711	838	1,092	1,321	1,549	1,702	1,854	2,134	2,311	2,565	2,921
E		12	14	16	12	12	12	12	18	18	18	18	24
L		305	356	406	305	305	305	305	457	457	457	457	610
Waight Approx (lbs.)		130	175	260	690	1,065	1,375	2,085	2,560	3,335	4,650	6,265	9,800
Weight Approx (lbs.)		59	79.4	117.9	313	492.1	623.7	945.8	1,161	1,513	2,109	2,842	4,445
Cv		300	500	950	2,175	3,825	6,125	8,850	10,875	14,325	18,300	22,875	33,275

Standard Features

- Carbon, stainless or special alloys
- Pressure seal
- Available Stellite seat, disc and backseat
- Seat-guided disc
- · Various combinations of seat and stem material
- Uniform distribution of sealing pressure

Dimensions – Double-Disc

Pressure Class 1500 (PN 260)

Fig. No.	Туре	Ends	NPS (DN)
GDD15U	Double-disc Gate	Butt Weld	2½ (65) thru 24 (600)
GDD15C	Double-disc Gate	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds

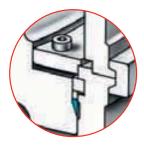
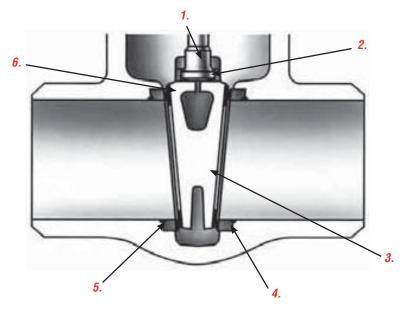

Colored numerals are in millimeters and kilograms

Figure No. GDD15U/GDD15C	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. GDD 150/GDD 15C	DN	65	80	100	150	200	250	300	350	400	450	500	600
В		10	12	16	22	28	34	39	42	47	53	58	68
D		254	305	406	559	711	864	991	1,067	1,194	1,346	1,473	1,727
D		27	28	36	44	52	61	69	74	91	92	104	118
D		686	711	914	1,118	1,321	1,549	1,753	1,880	2,311	2,337	2,642	2,997
E		12	14	12	12	12	12	18	18	18	18	24	24
E		305	356	305	305	305	305	457	457	457	457	610	610
Weight Approx (lbs.)		130	295	440	760	1,145	2,580	3,740	5,240	6,750	8,350	9,750	13,550
Weight Approx (lbs.)		58.9	133.8	199.6	344.7	519.4	1,170	1,696	2,377	3,062	3,788	4,423	6,146
Cv		300	450	800	1,875	3,275	5,250	7,525	9,175	12,150	15,500	19,600	28,775

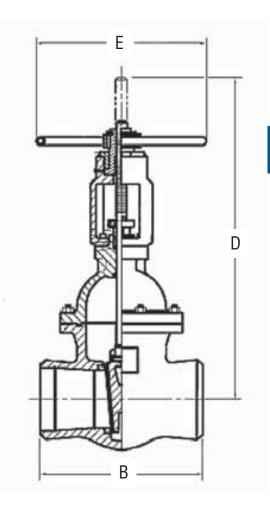
Features and Description of Flowserve Anchor/Darling Flex-Wedge Gate Valves


Flowserve has been supplying high-quality gate valves to the electric power and process industries throughout the world for over 90 years. Years of engineering research, combined with extensive operating experience, led to the development of the Flowserve Anchor/Darling Flex-Wedge design. The uniform section wedge offered today is the result of improvements to the solid, I-section and slotted configurations that have been supplied over the years. It is our continued commitment to incorporate the latest proven technology that has gained the Anchor/ Darling Flex-Wedge Valve the reputation for superior reliability.

Pressure Seal Design

Bolted Bonnet Design

- 1. Tight backseat sealing is achieved with less seating force because of the differential in mating angles between the stem shoulder and the hard-faced bonnet backseat.
- 2. T-head connection prevents transfer of side thrust from stem to wedge.
- Minimum center core ensures sufficient seating thrust, yet permits sealing surfaces to flex and seal tightly.
- **4. A crowned sealing surface** reduces contact area and ensures sufficient unit loading for a tight seal with minimal force.
- Seat rings are seal welded to minimize distortion from body stress while retaining ease of replacement.
- The uniform thickness of the flexure area at any radial point ensures consistent seating forces over the total sealing area.



Parts Specification List for Anchor/Darling Flex-Wedge Gate Valves

This is not a complete list. Construction and materials will vary between sizes and pressure classes and may be changed without notice. For a complete, accurate and itemized description of a particular valve, contact your Flowserve valves sales representative.

Description	ASME No.	ASME No.
Body/Bonnet*	SA-216	SA-351
body/bonnet	Grade WCB	Grade CF8
Gate 2½-6	SA-216	SA-351
	Grade WCB	Grade CF8M
Stem	A-314	A-564
otem	Grade 410T	Grade 630-1075
Pressure Seal Gasket**	Composite Pres	sure Seal Gasket.
Bonnet Retainer	A-515	A-515
	Grade 70	Grade 70
Bonnet Retainer Studs	SA-193	SA-193
boinet netainer Studs	Grade B7	Grade B7
Bonnet Retainer Nuts	A-194	A-194
bonnet netamer wuts	Grade 2H	Grade 2H
Gland	A-582	A-479
Gland Cland Stude	Grade 416T	Grade 304
Gland Studs	A-193	A-193
	Grade B7	Grade B7
Gland Nuts	A-194	A-194
	Grade 2H	Grade 2H
Yoke	A-216	A-216
	Grade WCB	Grade WCB
Yoke Lock Ring	A-516	A-516
Toke Lock Hing	Grade 70	Grade 70
Yoke Lock Ring Studs	A-193	A-193
Toke Look Hing Oluus	Grade B7	Grade B7
Yoke Lock Ring Nuts	A-194	A-194
TORG LOOK HING NUIS	Grade 2H	Grade 2H
Handwheel	A-53	A-53
Indiawiico	Class SB	Class SB

*Hardfaced wedge guide rails and seating surfaces. **Size 2½ through 6, Class 600 & Size 2½ through 4, Class 900 also available with bolted bonnet/flat gasket. ***Use A-368 Grade 660 T2 for applications over 1100°F

Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)
BGT01U	Gate	Butt Weld	2½ (65) thru 24 (600)
BGT01C	Gate	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds

Colored numerals are in millimeters and kilograms

Features

- · Carbon, stainless or special alloys
- · Bolted bonnet
- · Available Stellite seat, disc and backseat
- · Seat-guided disc

В

D

Е

Cv

- · Various combinations of seat and stem material
- · Uniform distribution of sealing pressure

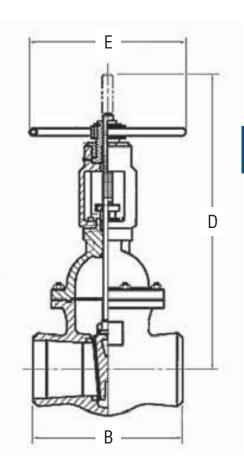
Dimensions – Flex Wedge, Butt Weld end only. Flanged dimensions available on request.

21/2 Figure No. NPS 4 24 3 6 8 10 12 14 16 18 20 BGT01U/BGT01C DN 80 100 300 450 65 250 400 600 9.5 11.1 12.0 15.9 16.5 18.0 19.8 22.5 24.0 26.0 28.0 32.0 241 282 404 419 457 503 572 610 660 711 813 23.0 25.0 29.0 35.0 46.0 50.0 61.0 64.0 70.0 78.0 87.0 98.0 584 635 737 889 1,168 1,270 1,549 1,626 1,778 1,981 2,210 2,489 12.0 12.0 12.0 12.0 12.0 12.0 18.0 12.0 12.0 12.0 12.0 18.0 305 457 305 305 305 457 305 80 125 175 265 440 600 840 1100 1450 1835 2400 3150 Weight Approx (lbs.) 36.2 56.7 79.4 120.2 199.6272.1 381 499 657.7 832.3 1,088.6 1,428.8 375 550 1025 2425 4500 7150 10,425 12,925 17,375 22,450 28,225 41,725

Black numerals are in inches and pounds

Colored numerals are in millimeters and kilograms

Standard Features


- Carbon, stainless or special alloys
- Bolted bonnet
- · Available Stellite seat, disc and backseat
- Seat-guided disc
- Various combinations of seat and stem material
- Uniform distribution of sealing pressure

Dimensions – Flex Wedge

Pressure Class 300 (PN 50)

Fig. No.	Туре	Ends	NPS (DN)
CGT01U	Flex Wedge Gate	Butt Weld	2½ (65) thru 24 (600)
CGT01C	Flex Wedge Gate	Flanged	2½ (65) thru 24 (600)

•													
	NPS	2-1/2	3	4	6	8	10	12	14	16	18	20	24
Figure No. CGT01U/CGT01C	DN	65	80	100	150	200	250	300	350	400	450	500	600
		9.5	11.1	12	15.9	16.5	18	19.8	30	33	36	39	45
D	B		282	305	404	419	437	503	762	838	914	991	1,143
		23	25	29	40	47	54	62	66	76	83	90	103
D		584	635	737	1,016	1,194	1,372	1,575	1,676	1,930	2,108	2,286	2,616
		12	12	12	12	18	12	18	18	18	24	18	18
E		305	305	305	305	457	305	457	457	457	610	457	457
Weight Approx (lbs.)		60	125	175	375	560	850	1,245	1,400	1,850	2,385	2,950	5,500
		27.2	56.7	79.4	170.1	254.0	385.6	564.7	635.0	839.2	1,081.8	1,338.1	2,494.8
Cv		375	550	1,025	2,425	4,500	7,150	10,425	12,925	17,375	21,800	27,500	40,825

Standard Features

- Carbon, stainless or special alloys
- · Bolted bonnet or pressure seal
- Available Stellite seat, disc and backseat
- Seat-guided disc
- · Various combinations of seat and stem material
- Uniform distribution of sealing pressure

Dimensions – Flex Wedge

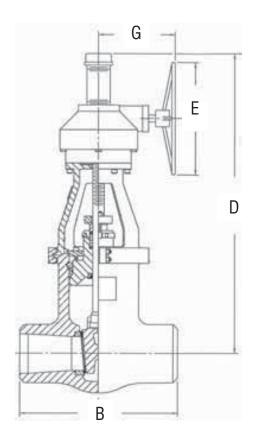

Pressure Class 600 (PN 110)

Fig. No.	Туре	Ends	NPS (DN)
EGT01U	Bolted Bonnet Flex Wedge Gate	Butt Weld	2½ (65) thru 24 (600)
EGT01C	Bolted Bonnet Flex Wedge Gate	Flanged	2½ (65) thru 24 (600)
EGT05U	Pressure Seal Flex Wedge Gate	Butt Weld	2½ (65) thru 24 (600)
EGT05C	Pressure Seal Flex Wedge Gate	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. EGT01U/EGT01C,	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
EGT05U/EGT05C	DN	65	80	100	150	200	250	300	350	400	450	500	600
		8.5	10	12	18	23	28	32	35	39	43	47	55
В		216	254	305	457	584	711	813	889	991	1,092	1,194	1,399
D		21	29	31	42	47	57	65	69	77	83	98	110
D		533	737	787	1,067	1,194	1,448	1,651	1,753	1,955	2,108	2,489	2,794
E		12	12	12	12	18	12	12	12	18	18	18	36
E		305	305	305	305	457	305	305	305	457	457	457	914
Weight Approx (lbs.)		75	130	215	550	750	925	1,495	1,900	2,645	3,760	5,270	7,500
		34.0	59.0	97.0	249.5	340.2	420.6	678.1	861.8	1,199.8	1,705.5	2,390.5	3,402
Cv		375	550	1,025	2,375	4,225	6,625	9,850	12,025	15,900	20,100	24,900	36,525

Standard Features

- Carbon, stainless or special alloys
- Pressure seal available
- Available Stellite seat, disc and backseat
- Seat-guided disc
- · Various combinations of seat and stem material
- · Uniform distribution of sealing pressure

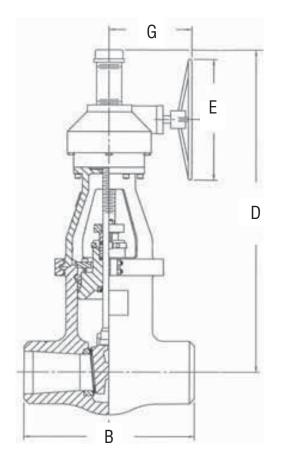

Pressure Class 900 (PN 150)

Fig. No.	Туре	Ends	NPS (DN)
FGT05U Flex Wedge Gate		Butt Weld	2½ (65) thru 24 (600)
FGT05C	Flex Wedge Gate	Flanged	2½ (65) thru 24 (600)

Dimensions – Flex Wedge

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

						1							
Figure No. FGT05U/FGT05C	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
	DN	65	80	100	150	200	250	300	350	400	450	500	600
		10	12	14	20	26	31	36	39	43	48	50	59
В		254	305	356	508	660	787	914	991	1,092	1,219	1,270	1,499
D		26	28	31	46	48	55	64	72	84	95	102	112
D		635	711	787	1,168	1,219	1,397	1,626	1,829	2,134	2,413	2,591	2,845
		12	12	18	12	18	18	18	12	18	12	18	12
E		305	305	457	305	457	457	457	305	457	305	457	305
6		—	—	—	11	11	15	15	15	16	21	22	23
G		—	—	—	279	279	381	381	381	406	533	559	584
Weight Approx (lbs.)		160	160	225	660	910	1,500	2,030	2,600	3,500	5,620	7,920	11,500
		72.6	72.6	102	299.4	412.8	680.4	920.8	1,270	1,588	2,549	3,593	5,262
Cv		300	500	950	2,175	3,825	6,125	8,850	10,875	14,325	18,300	22,875	33,275

Standard Features

- Carbon, stainless or special alloys
- Pressure seal
- Available Stellite seat, disc and backseat
- Seat-guided disc
- · Various combinations of seat and stem material
- Uniform distribution of sealing pressure

n of sealing pressure

Dimensions – Flex Wedge

Pressure Class 1500 (PN 260)

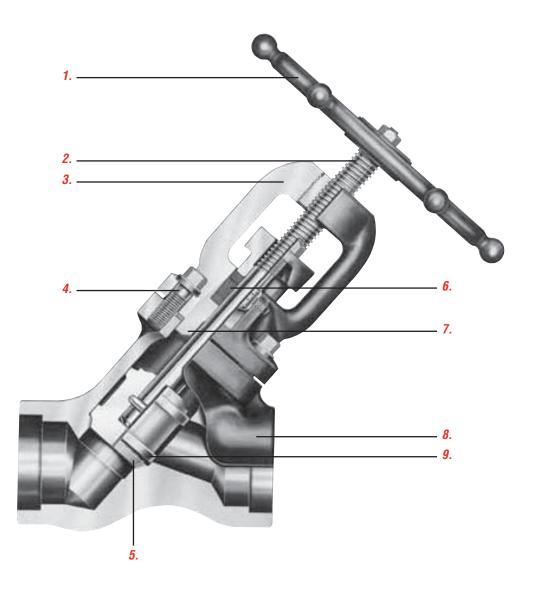
Fig. No.	Туре	Ends	NPS (DN)		
GGT05U Flex Wedge Gate		Butt Weld	2½ (65) thru 24 (600)		
GGT05C	Flex Wedge Gate	Flanged	2½ (65) thru 24 (600)		

Figure No. CCTOFU/CCTOFC NPS		21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. GGT05U/GGT05C	DN	65	80	100	150	200	250	300	350	400	450	500	600
		10	12	16	22	28	34	39	42	47	53	58	68
В		254	305	406	559	711	864	991	1,067	1,194	1,346	1,473	1,727
D		28	30	34	46	53	60	68	78	89	101	114	128
		711	762	864	1,168	1,346	1,524	1,727	1,981	2,261	2,565	2,896	3,251
E		12	12	12	18	18	12	18	12	12	12	18	18
E		305	305	305	457	457	305	457	305	305	305	457	457
Weight Approx (Ibs.)		250	290	410	760	1,420	1,920	3,350	4,200	5,860	7,850	9,200	15,250
		113.4	131.5	186.0	340.2	644.1	870.9	1,520	1,905	2,658	3,561	4,173	6,917
Cv		300	450	800	1,875	3,275	5,250	7,525	9,175	12,150	15,500	19,600	28,775

Refer to page 50 for materials of construction.

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

<u>55</u>



Page intentionally left blank

Edward Globe and Stop-Check Valves

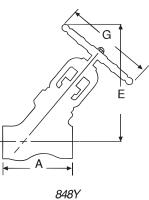
Features and Description of Edward Bolted Bonnet Globe Valves

- Handwheel is rugged and knobbed to provide sure grip even when wearing gloves.
- 2. Stem has ACME threads, is grounded to a fine finish and is hardened to resist wear.
- **3. Yoke bushing** material has low coefficient of friction, which substantially reduces torque and stem wear and eliminates galling. Mechanical upset locks yoke bushing to yoke.
- 4. Bolted bonnet joint utilizes a spiral-wound gasket for positive sealing and four-bolt design for ease of assembly. Bonnet has pilot extension to ensure proper alignment and positive metal-to-metal stop to prevent over-compression of gasket.
- 5. Integral hardsurfaced seat provides positive shutoff and long seat life.
- 6. Stem packing system utilizes flexible graphite packing material with anti-extrusion rings for optimum sealability and life.
- **7. Integral backseat** provides a secondary stem seal backup for positive shutoff and leak protection.
- 8. Body utilizes optimized flow passages to minimize flow direction changes and reduce pressure drop.
- **9. Body-guided disc** utilizes anti-thrust rings to eliminate misalignment, galling and stem bending.

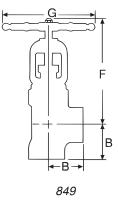
Parts Specification List for Edward Bolted Bonnet Globe Valves

Edward bolted bonnet valves for nuclear service are available in Class 600 only. Refer to Forged Steel Catalog, EVENCT0001 for stop, stop-check and piston check valve dimensions (Class 800 dimensions apply to Nuclear Class 600 Valves).

This is not a complete list. Construction and materials will vary between sizes and pressure classes and may be changed without notice. For a complete, accurate and itemized description of a particular valve, contact your Flowserve Edward and Anchor/ Darling valves sales representative.


	Bolted Bonnet				
Description	ASME/ASTM No.				
Body/Bonnet	SA-105				
-	-				
)isc*	AISI 615				
lody Seat	Stellite 21				
Stem	A-582				
Capscrews	SA-193				
	Grade B-7				
Basket	Spiral Wound				
200801	Non Asbestos				
acking	Flexible Graphite System				
Gland	A-582				
	Grade 80 - 55 - 06				
oke Bushing	B-150 C61900 or C6230100				
andwheel/Handle	Malleable or Ductile Iron				
tem Nut	Mild Steel Plated				
ue Pelt	A-582				
ye Bolt	T-416				
we Delt Nut	A-194				
ye Bolt Nut	Grade 8				
vo Polt Din	AISI				
ye Bolt Pin	Grade 4140				
nrina**	A-313				
Spring**	T-302				

* Check and stop-check valve discs are A565T-616 ** Check valves and stop-check valves



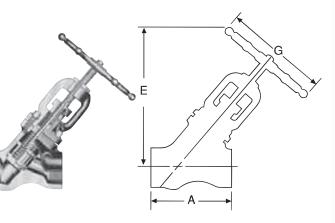
Stop Valves, Class 600

Standard Features

- Bodies and bonnets are of forged steel (A105)
- · Bolted bonnet, OS & Y
- Y pattern or angle design
- Body-guided hardened stainless steel disc
- Integral Stellite seat
- Integral backseat
- 13% chromium stainless steel stem

Dimensions – Globe & Angle

Pressure Class 600 (PN 110)


Fig. No.	Туре	Ends	NPS (DN)	
848Y	Y Pattern	Socket Weld	1((0) three 0 (50)	
849Y	Angle	Socket Weld	¹ ⁄4 (8) thru 2 (50)	

- · Asbestos-free graphitic packing
- Asbestos-free spiral-wound bonnet gasket
- · Knobbed handwheel

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

J									•
Figure No. 848/848Y, 849/849Y	NPS	1⁄4	3/8	1⁄2	3⁄4	1	11⁄4	1½	2
Figure No. 040/0401, 049/0491	DN	8	10	15	20	25	32	40	50
A Fridda Frid Olaha		3	3	3	3.6	4.3	5.8	5.8	6.5
A - End to End, Globe		76	76	76	91	109	147	147	165
		1.5	1.5	1.5	1.8	2	2.9	2.9	3.3
B - Center to End, Angle	-	38	38	38	46	51	74	74	84
E - Center to Top, Globe (Open)		6	6	6	6.8	7.6	10.9	10.9	12.1
		152	152	152	173	193	277	277	307
		5.7	5.7	5.7	6.4	7.1	10.2	10.2	11
F - Center to Top, Angle (Open)		145	145	145	163	180	259	259	279
C Handwheel Diameter		3.8	3.8	3.8	4.3	4.8	7.1	7.1	8.5
G - Handwheel Diameter	-	97	97	97	109	122	180	180	216
Waight Clabs		4	4	4	5.5	7.5	16	16	23
Weight, Globe		1.8	1.8	1.8	2.5	3.4	7.2	7.2	10.4
		4	4	4	5.5	7	17	17	24
weight, Angle	Weight, Angle		1.8	1.8	2.5	3.2	7.7	7.7	10.8

Stop-Check Valves, Class 600

Standard Features

- · Bodies and bonnets are of forged steel (A105)
- · Bolted bonnet, OS & Y
- Y pattern or angle design
- · Body-guided hardened stainless steel disc
- Integral Stellite seat
- · Integral backseat
- 13% chromium stainless steel stem
- Asbestos-free graphitic packing
- · Asbestos-free spiral wound bonnet gasket
- · Knobbed handwheel
- · Stainless steel spring

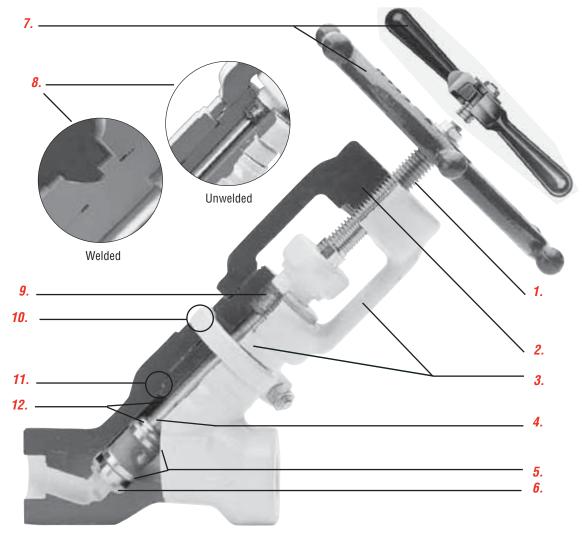
_

|--|--|--|

869Y

Pressure Class 600 (PN 110)

Fig. No.	Туре	Ends	NPS (DN)
868Y	Y Pattern	Socket Weld	1/4 (8) thru 2 (50)
869Y	Angle	Socket Weld	⁹⁴ (0) thru 2 (50)


Dimensions – Globe & Angl	imensions – Globe & Angle							Colored numerals are in millimeters and kilograms				
	NPS	1⁄4	3/8	1⁄2	3⁄4	1	1¼	1½	2			
Figure No. 868/868Y, 869/869Y	DN	8	10	15	20	25	32	40	50			
A - End to End. Globe		3	3	3	3.6	4.3	5.8	5.8	6.5			
		76	76	76	91	109	147	147	165			
B - Center to End, Angle		1.5	1.5	1.5	1.8	2	2.9	2.9	3.3			
		38	38	38	46	51	74	74	84			
E - Center to Top, Globe (Open)		6	6	6	6.8	7.6	10.9	10.9	12.1			
		152	152	152	173	193	277	277	307			
F - Center to Top, Angle (Open)		5.7	5.7	5.7	6.4	7.1	10.2	10.2	11			
- Center to Top, Angle (Open)		145	145	145	163	180	259	259	279			
G - Handwheel Diameter		3.8	3.8	3.8	4.3	4.8	7.1	7.1	8.5			
G - Halluwheel Dialitetel		97	97	97	109	122	180	180	216			
Weight, Globe		4	4	4	5.5	7.5	16	16	23			
		1.8	1.8	1.8	2.5	3.4	7.2	7.2	10.4			
Weight, Angle		4	4	4	5.5	7	17	17	24			
		1.8	1.8	1.8	2.5	3.2	7.7	7.7	10.8			
Pafar to page 50 for materials of construe	otion											

Refer to page 59 for materials of construction.

Black numerals are in inches and pounds

Features and Description of Edward Univalve® Globe Valves

- 1. Stem has ACME threads, is ground to a fine finish and is hardened to resist wear.
- **2. Yoke bushing** material has low coefficient of friction, which substantially reduces torque and stem wear and eliminates galling. Mechanical upset locks yoke bushing to yoke.
- 3. Yoke-bonnet assembly is two piece to facilitate disassembly for faster in-line internal repairs.
- 4. Inclined stem construction and optimum flow shape minimize flow direction changes and reduce pressure drop.
- **5. Body-guided disc** utilizes anti-thrust rings to eliminate misalignment, galling and stem bending.
- 6. Integral hardsurfaced seat provides positive shutoff and long seat life.
- Handwheel on smaller size valves is rugged and knobbed to provide sure grip even when wearing gloves. Impactor
 <u>62</u>

handle or handwheel on larger, higher pressure valves provides many times the closing force of an ordinary handwheel for positive seating.

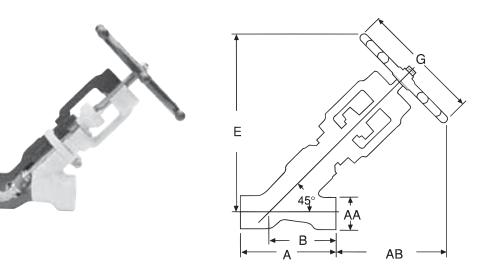
- 8. Threaded bonnet has ACME threads for resistance to galling and ease of disassembly. Unwelded models utilize a graphitic gasket for dependable sealing. Welded models employ a fillet weld (canopy weld on stainless steel valves) for absolute protection from body-bonnet leakage.
- Stem packing system utilizes flexible graphite packing material with carbon fiber anti-extrusion rings for optimum sealability and life.
- 10. Bonnet locking collar (unwelded valves only).
- **11. Bonnet seal ring** is die-formed flexible graphite gasket seated to a prescribed bonnet torque to provide reliable bonnet seal.
- 12. Integral backseat provides a secondary stem seal backup for positive shutoff and leak protection.

Parts Specification List for Edward Univalve® Valves

Standard Features

- Available body material SA 105 carbon steel SA 182 Grade F22 SA 182 Grade F316
- · Unwelded (graphitic seal) or wealed bonnet
- OS & Y
- Y Pattern
- Body-guided investment cast Stellite disc
- Integral Stellite seat
- · Integral backseat
- Asbestos-free graphitic packing

Edward Univalves for nuclear service are normally furnished in standard Class 1500 or 2500. Other interpolated pressure classes are also available on application. Refer to the Flowserve Edward Forged Steel Catalog page 42-53 for dimensions. (Class 1690 dimensions apply to nuclear Class 1500, and Class 2680 dimensions apply to nuclear Class 2500 valves.) Parts shown are not applicable to Univalve[®] valves. Construction and materials for nuclear valves may vary depending upon customer design specifications. For a complete, accurate and itemized description of a particular valve, contact your local Flowserve valves sales representative.


Description	ASME/ASTM No.	ASME/ASTM No.	ASME/ASTM No.		
D. J.	SA-105	SA-182	SA-182		
Body		Grade F-22	Grade F316		
Demast	SA-696	SA-739	SA-479		
Bonnet	Grade C	Grade B-22	T-316		
	A-582	A-582	SA-564		
Stem	T-416	T-416	T-630		
			Condition H-1100		
	A-732	A-732	A-732		
Disc Size ½-2	Grade 21	Grade 21	Grade 21		
	SA-182 F316	SA-182 F316	SA-182 F316		
Disc Size 2-1/2-4	Stellite Faced	Stellite Faced	Stellite Faced		
Body Seat	Stellite 21	Stellite 21	Stellite 21		
bouyocat			A-732		
Junk Ring			Grade 21		
	Flexible Graphite	Flexible Graphite	Flexible Graphite		
Packing Rings	System	System	System		
	A-182	A-182	A-732		
Gland	Grade F6a	Grade F6a	Grade 21		
Gland Adjusting	A-582	A-582	A-564		
Screw	T-416	T-416	T-630		
	A-181	A-181	A-181		
Yoke	Class 70	Class 70	Class 70		
Yoke Bushing	B150 C61900/62300	B150 C61900/62300	B150 C61900/62300		
0	A-307	A-307	A-564		
Yoke Bolt	Grade A-Plated	Grade A-Plated	T-630		
	A-563	A-563	A-194		
Yoke Bolt Nut	Grade A-Plated	Grade A-Plated	Grade 8		
Handwheel Impactor	Malleable or Ductile	Malleable or Ductile	Malleable or Ductile		
Handle	Iron	Iron	Iron		
Stem Nut	Mild Steel	Mild Steel	Mild Steel		
Stem Nut	Plated	Plated	Plated		
Adapter	Malleable or Ductile	Malleable or Ductile	Malleable or Ductile		
	Iron	Iron	Iron		
Washer	Mild Steel	Mild Steel	Mild Steel		
	Plated	Plated	Plated		
Bonnet Seal Ring**	Graphite	Graphite	Graphite		
Locking Collar**	Cast Steel	Cast Steel	Cast Steel		
Spring*	A-313	A-313	A-313		
- r · · · · · · · · ·	T-302	T-302	T-302		

Cobalt-free materials available for wetted parts.

*Check valves only. **Unwelded valves only.

Univalve[®] Stop Valves, Class 1500

36124

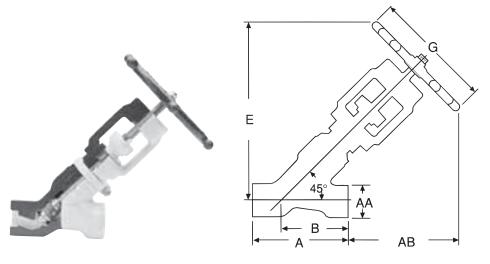
Pressure Class 1500 (PN 260)

Fig. No.		Туре	Ends	NPS (DN)			
Welded	Unweld.	The	Ellus	NF3 (DN)			
36124	36224	Y Pattern	Socket Weld	½ (15) thru 2½ (65)			
36128	36228	Y Pattern	Butt Weld	½ (15) thru 4 (100)			

- · Body-guided investment cast Stellite disc
- Integral Stellite seat
- · Integral backseat
- · Asbestos-free graphitic packing

Standard Features

- · Available body materials
 - SA105 carbon steel
 - F22 alloy steel
- F316
- Other material on application
- · Unwelded (graphitic seal) or welded bonnet
- OS & Y
- Y Pattern


Dimensions – Globe

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 36124, 36128, 36224, 36228	NPS	1⁄2	3⁄4	1	11⁄4	1½	2	21⁄2	3	4
Figure No. 30124, 30120, 30224, 30220	DN	15	20	25	32	40	50	65	80	100
A - End to End		6.0	6.0	6.0	6.7	6.7	8.2	10.7	10.7	12.8
		152	152	152	170	170	208	272	272	325
AA - End Hub Diameter		2.30	2.30	2.30	3.20	3.20	3.64	4.00	4.00	4.80
AA - Liiu liub Dialiletei		58	58	58	81	81	92	102	102	122
AB - Handwheel Clearance (Open)		7.5	7.5	7.5	11.0	11.0	11.6	12.5	12.5	11.2
		191	191	191	279	279	295	318	318	284
D. Oratea to End		4.0	4.0	4.0	4.8	4.8	6.1	7.1	7.1	8.8
B - Center to End		102	102	102	122	122	155	180	180	224
E Contor to Top (Open)		11.5	11.5	11.5	15.9	15.9	17.7	19.6	19.6	20.0
E - Center to Top (Open)		292	292	292	404	404	450	498	498	508
C Handwhaal/Handla Diamatar		8.5	8.5	8.5	14.3*	14.3*	14.3*	16.0**	16.0**	16.0**
G - Handwheel/Handle Diameter		216	216	216	363*	363*	363*	406**	406**	406**
Weight, Welded		19	19	19	36	36	57	100	100	138
		9	9	9	16	16	26	46	46	63
Weight Upwelded		20	20	20	38	38	59	104	104	142
Weight, Unwelded		9	9	9	17	17	27	47	47	64

* Impactor Handle **Impactor Handwheel

Univalve® Stop-Check Valves, Class 1500

36164

Standard Features

- Available body materials
 - SA105 carbon steel
 - F22 alloy steel
 - F316 stainless steel
- Unwelded (graphitic seal) or welded bonnet
- OS & Y
- Y Pattern
- Body-guided investment cast Stellite disc

Pressure Class 1500 (PN 260)

Fig.	No.	Type	Ends	NPS (DN)
Welded		iyhe	Ellus	NF3 (DN)
36164	36264	Y Pattern	Socket Weld	½ (15) thru 2½ (65)
36168	36268	Y Pattern	Butt Weld	½ (15) thru 4 (100)

- · Integral Stellite seat
- · Integral backseat
- · Asbestos-free graphitic packing

Dimensions – Globe

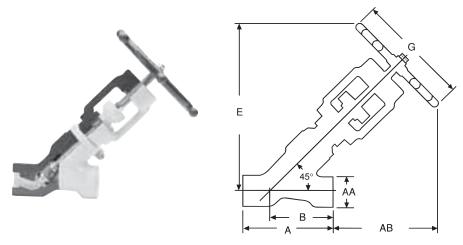

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 26164, 26169, 26264, 26269	NPS	1/2	3⁄4	1	11⁄4	1½	2	21/2	3	4
Figure No. 36164, 36168, 36264, 36268	DN	15	20	25	32	40	50	65	80	100
A - End to End		6.0	6.0	6.0	6.7	6.7	8.2	10.7	10.7	12.8
		152	152	152	170	170	208	272	272	325
AA - End Hub Diameter		2.30	2.30	2.30	3.20	3.20	3.64	4.00	4.00	4.80
		58	58	58	81	81	92	102	102	122
AB - Handwheel Clearance (Open)		7.5	7.5	7.5	11.0	11.0	11.6	12.5	12.5	11.2
		191	191	191	279	279	295	318	318	284
D. Orates to Fad		4.0	4.0	4.0	4.8	4.8	6.1	7.1	7.1	8.8
B - Center to End		102	102	102	122	122	155	180	180	224
F Contar to Ton (Onon)		11.5	11.5	11.5	15.9	15.9	17.7	19.6	19.6	20.0
E - Center to Top (Open)		292	292	292	404	404	450	498	498	508
G - Handwheel/Handle Diameter		8.5	8.5	8.5	14.3*	14.3*	14.3*	16.0**	16.0**	16.0**
G - Halluwileel/Hallule Dialitetel		216	216	216	363*	363*	363*	406**	406**	406**
Weight Welded		19	19	19	36	36	57	100	100	138
Weight, Welded		9	9	9	16	16	26	46	46	63
Weight, Unwelded		20	20	20	38	38	59	104	104	142
		9	9	9	17	17	27	47	47	64

* Impactor Handle ** Impactor Handwheel

Univalve[®] Stop Valves, Class 2500

66124

Standard Features

- Available body material
 - SA105 carbon steel
 - F22 alloy steel
 - F316 stainless steel
- Other material on application
- Unwelded (graphitic seal) or welded bonnet
- OS & Y
- Y Pattern
- Body-guided investment cast Stellite disc

Dimensions – Globe

Pressure Class 2500 (PN 420)

Fig.	No.	Type	Ends	NPS (DN)
Welded	ed Unweld.	ishe	Liius	NF 3 (DN)
66124	66224	Y Pattern	Socket Weld	½ (15) thru 2½ (65)
66128	66228	Y Pattern	Butt Weld	½ (15) thru 4 (100)

- Integral Stellite seat
- · Integral backseat
- · Asbestos-free graphitic packing

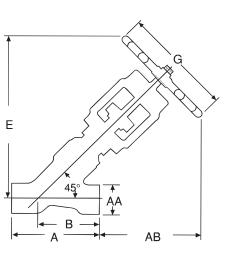

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 66124 66129 66224 66229	NPS	1/2	3⁄4	1	1-1⁄4	1-1⁄2	2	2-1/2	3	4
Figure No. 66124, 66128, 66224, 66228	DN	15	20	25	32	40	50	65	80	100
		6.0	6.0	6.0	6.7	6.7	10.7	12.8	12.8	12.8
A - End to End		152	152	152	170	170	272	325	325	325
AA - End Hub Diameter		2.30	2.30	2.30	3.20	3.20	4.00	4.80	4.80	4.80
AA - Eliu Hub Dialiletei		58	58	58	81	81	102	122	122	122
AP Handwheel Clearance (Open)		7.5	7.5	7.5	9.8	9.8	11.6	11.2	11.2	11.2
AB - Handwheel Clearance, (Open)		191	191	191	249	249	296	284	284	284
		4.0	4.0	4.0	4.8	4.8	7.1	8.8	8.8	8.8
B - Center to End		102	102	102	122	122	180	224	224	224
E Contor to Top (Open)		11.5	11.5	11.5	14.6	14.6	18.6	20.0	20.0	20.0
E - Center to Top, (Open)		292	292	292	371	371	472	508	508	508
G - Handwheel/Handle Diameter		8.5	8.5	8.5	11.0*	11.0*	14.3*	16.0**	16.0**	16.0**
G - Halluwileel/Hallule Dialiteter		216	216	216	279*	279*	363*	406**	406**	406**
Weight Wolded		19	19	19	34	34	79	142	142	142
Weight, Welded		9	9	9	16	16	36	65	65	65
Weight Upwelded		20	20	20	36	36	83	146	146	146
Weight, Unwelded		9	9	9	17	17	38	66	66	66

* Impactor Handle ** Impactor Handwheel

Univalve® Stop-Check Valves, Class 2500

66164

Black numerals are in inches and pounds

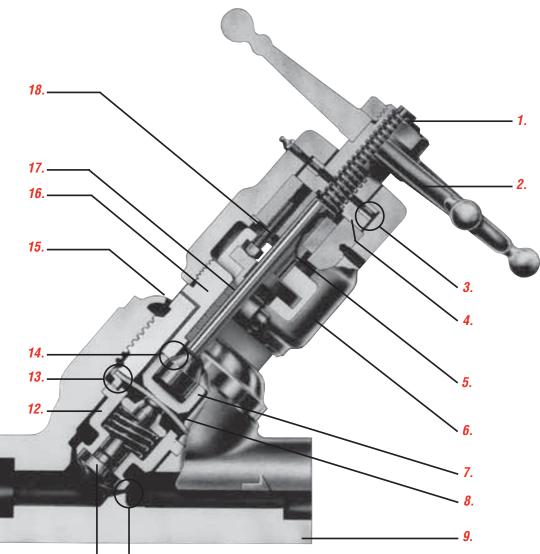
Standard Features

- · Available body material
 - SA105 carbon steel
 - F22 alloy steel
 - F316 stainless steel
 - Other material on application
- Unwelded (graphitic seal) or welded bonnet
- 0S & Y
- Y Pattern
- · Body-guided investment cast Stellite disc

Pressure Class 2500 (PN 420)

Fig.	No.	Tuno	Ends	NPS (DN)
Welded	Unweld.	Туре	Ellus	NF3 (DN)
66164	66264	Y Pattern	Socket Weld	½ (15) thru 2½ (65)
66168	66268	Y Pattern	Butt Weld	½ (15) thru 4 (100)

- · Integral Stellite seat
- · Integral backseat
- · Asbestos-free graphitic packing


Dimensions – Globe

Dimensions – Globe Colored numerals are in millimeters and kilogram										
Figure No. 66164 66169 66064 66060	NPS	1/2	3⁄4	1	11⁄4	1½	2	21/2	3	4
Figure No. 66164, 66168, 66264, 66268	DN	15	20	25	32	40	50	65	80	100
A - End to End		6.0	6.0	6.0	6.7	6.7	10.7	12.8	12.8	12.8
A - Ella lo Ella		152	152	152	170	170	272	325	325	325
AA - End Hub Diameter		2.30	2.30	2.30	3.20	3.20	4.00	4.80	4.80	4.80
		58	58	58	81	81	102	122	122	122
AB - Handwheel Clearance (Open)		7.5	7.5	7.5	9.8	9.8	11.6	11.2	11.2	11.2
		191	191	191	249	249	295	284	284	284
		4.0	4.0	4.0	4.8	4.8	7.1	8.8	8.8	8.8
B - Center to End		102	102	102	122	122	180	224	224	224
E Contor to Ton (Onon)		11.5	11.5	11.5	14.6	14.6	18.6	20.0	20.0	20.0
E - Center to Top (Open)		292	292	292	371	371	472	508	508	508
C Handushaal/Handla Diamatar		8.5	8.5	8.5	11.0*	11.0*	14.3*	16.0**	16.0**	16.0**
G - Handwheel/Handle Diameter		216	216	216	279*	279*	363*	406**	406**	406**
Weight Wolded		19	19	19	34	34	79	142	142	142
Weight, Welded		9	9	9	16	16	36	65	65	65
Weight Upwelded		20	20	20	36	36	83	146	146	146
Weight, Unwelded		9	9	9	17	17	38	66	66	66

* Impactor Handle **Impactor Handwheel

Features and Description of Edward Hermavalve[®] *Hermetically Sealed Valves*

11. 10.

Features and Description of Edward Hermavalve[®] *Hermetically Sealed Valves*

- 1. Position indicator shows whether the valve is open or closed.
- Handwheel is rugged and knobbed to permit sure grip even when wearing gloves.
- Needle thrust bearings minimize torque. Their upper yoke location protects from heat and allows lubrication.
- **4. Yoke bushing**. Revolving bushing of aluminum bronze material has low coefficient of friction, substantially reduces torque, stem wear and eliminates galling.
- Non-revolving stem is stainless steel. It is ground to a fine finish and keyed to the yoke to prevent rotation and torsional stress on the diaphragm.
- 6. Yoke of carbon steel is electroless nickel plated for corrosion resistance.
- 7. Diaphragm disc is a unique patented shape that maximizes diaphragm life.
- 8. Diaphragm of multi-ply flexible metal provides a reliable primary stem seal.
- **9. Body** with inclined stem construction and unique flow shape minimizes flow directional changes and cuts pressure drop.
- 10. Integral hardfaced seat of hard, heat-resistant hardfacing material is integrally welded to the body.

- **11. Solid Stellite disc** ensures maximum seating life.
- **12. Disc guide assembly** ensures disc/seat alignment. Its completely encapsulated spring ensures full disc lift.
- 13. Diaphragm seal weld is a unique seal weld, which makes the diaphragm an integral part of the bonnet and eliminates a potential leak path past the stem.
- 14. Backseat provides a secondary stem seal backup.
- **15. Body-bonnet seal** features leak-proof seal-welded construction. The weld is for seal only; the threaded section carries the pressure load. Canopy weld in stainless steel; fillet weld in carbon steel.
- **16. Bonnet** is barstock steel with gallresistant ACME threads to ensure easy disassembly from body.
- Backup packing with OS & Y design allows for inspection or addition of packing without disassembling valve.
- Adjustable gland screws with OS & Y design allow for easy access to packing adjustment, if necessary.

What is a Hermavalve? A Hermavalve is a hermetically sealed valve that cannot leak to the environment. The Edward Hermavalve cannot leak because it is double-seal welded:

- 1. The multi-ply flexible metal diaphragm is seal welded to the bonnet.
- 2. The body-to-bonnet joint is also seal welded.

This patented construction eliminates any potential leakage through a mechanical joint. It is more than just packless. It is hermetically sealed.

Zero leakage to environment—Welded, hermetic design and dependable metal diaphragm help to ensure zero leakage for the life of the valve. In approved services, the valve is warranted against leakage to the environment.

High-efficiency flow-shape—Unique flow shape ensures high C_v comparable to or greater that conventionally packed valves—proven by extensive flow testing.

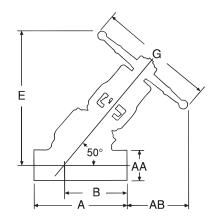
Non-revolving stem design—Ensures lowest possible operating torque and is the only absolute method of avoiding diaphragm damage caused by rotational forces from a revolving stem.

Two backup stem seals—1) Packing and 2) backseat provide backup seals.

Nuclear quality—Available to ASME Section III—Class 1, 2, 3.

Parts Specification List for Edward Hermavalve®

Construction and materials for nuclear valves may vary depending upon customer design specifications. For a complete, accurate and itemized description of a particular valve, contact your Flowserve Edward valves sales representative.


Description	ASME/ASTM No.	ASME/ASTM No.
Body	SA-105	SA-182 Grade F316
Disc	A-732 Grade 21	A-732 Grade 21
Body Seat	Stellite 21	Stellite 21
Stem	A-582 T-416	SA-564 T-630 Cond. H-1100
Junk Ring	A-582 T-416	A-582 T-416
Bonnet	SA-696 Grade C	SA-479 T316
Yoke Bolt	A-193 Grade B6	A-564 T-630
Packing	Flexible Graphite System	Flexible Graphite System
Gland	A-582 T-416	A-564 T-630
Retaining Ring	Nickel-Plated Steel	Nickel Plated Steel
Gland Adjusting Screw	A-193 Grade B6	A-564 T630
Stem Guide Bushing	A-696 Grade C Nickel Plated	A-696 Grade C Nickel Plated
Yoke Bolt Nut	A-194 Grade 6F	A-194 Grade 8
Yoke	A-216 Grade WCB Nickel Plated	A-216 Grade WCB Nickel Plated
Yoke Bushing	B-150 Alloy C61900 - C62300	B-150 Alloy C61900 - C62300
Drive Pin	A-564 T630	A-564 T630
Key	A-331 Grade 4140	A-331 Grade 4140
Spring Housing	A-582 T-416	A-564 T-630
Diaphragm Ring	SA-696 Grade C	SA-479 T-316
Diaphragm Assembly	B-670 Alloy 718 (Inconel)	B-670 Alloy 718 (Inconel)
Diaphragm Disc	A-732 Grade 21	A-732 Grade 21
Shims	A-167 T-316	A-167 T-316
Disc Collar	A-565 Grade 616	A-565 Grade 616
Spring	Inconel X-750	Inconel X-750
Handwheel	Malleable or Ductile Iron	Malleable or Ductile Iron
Handwheel Nut	Nickel-Plated Steel	Nickel-Plated Steel
Indicator	A-479 T-316	A-479 T-316
Thrust Bearing	Steel	Steel
Lube Fitting	Nickel-Plated Steel	Nickel-Plated Steel

Note: Cobalt-free materials available for wetted parts.

Hermavalve[®] Hermetically Sealed Valves ASME SECTION III – Code Class 1, 2, or 3

Nuclear Service Guarantee

Zero leakage to environment for 40 years or 4000 cycles, or we replace the valve at NO COST. For detailed warranty statement, consult your Flowserve Edward valves representative.

Standard Features

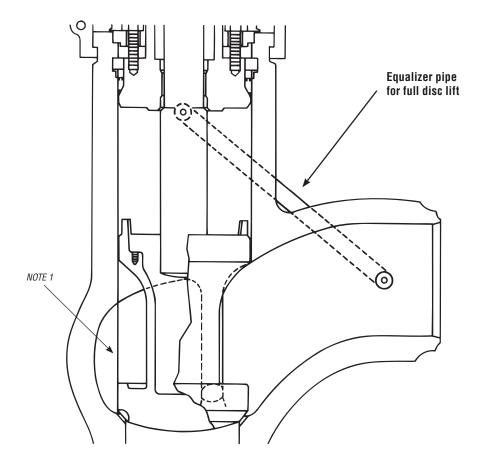
- SA105 or SA182 Grade F316
 body and bonnet
- Seal-welded diaphragm and seal-welded body/bonnet joint
- OS & Y
- Y Pattern
- · Non-revolving stem with position indicator
- Back-up asbestos-free graphitic
 packing and secondary stem backseat
- · Integral hardfaced seat
- · Knobbed handwheel

Dimensions

Pressure Class 1690 (PN 290)

Fig. No.	Material	Ends	Port	NPS (DN)		
15004	Carbon Steel	Socket Weld	Regular	16 (15) thru 0 (50)		
15008	Carbon Steel	Butt Weld	Regular	1⁄2 (15) thru 2 (50)		
15014	Carbon Steel	Socket Weld	Reduced	1 (05) thru 0 1((40))		
15018	Carbon Steel	Butt Weld	Reduced	1 (25) thru 2-½ (40)		
15104	Stainless Steel	Socket Weld	Regular	1((15) + bru 0 (50))		
15108	Stainless Steel	Butt Weld	Regular	1⁄2 (15) thru 2 (50)		
15114	Stainless Steel	Socket Weld	Reduced	1 (05) thru 0 1/ (40)		
15118	Stainless Steel	s Steel Butt Weld Redu		1 (25) thru 2-½ (40)		

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


				Regular Por	t			Reduc	ed Port	
Figure No. 15004, 15008, 15014, 15018, 15104, 15108, 15114, 15118		1/2	3⁄4	1	1-1⁄2	2	1	1-1⁄2*	2	2-1/2
13104, 13100, 13114, 13110	DN	15	20	25	40	50	25	40	50	65
A - End to End		5.5	5.5	6.62	8.7	10	5.5	6.62	8.7	10
		140	140	168	220	254	140	168	220	254
		2.06	2.06	2.12	3.4	3.4	2.06	2.12	3.4	3.4
AA - End Hub Diameter	Ī	52	52	54	86	86	52	54	86	86
		4.62	4.62	5.69	9.06	10.88	4.62	5.69	9.06	10.88
AB - Handwheel Clearance (Open)	ĺ	117	117	145	230	276	117	145	230	276
E Contor to Ton		9.12	9.12	11.19	16	18.5	9.12	11.19	16	18.5
E - Center to Top	ĺ	232	232	284	406	470	232	284	406	470
P. Contor to End		3.8	3.8	4.62	6	6.86	3.8	4.62	6	6.86
B - Center to End		97	97	117	152	174	97	117	152	174
G - Handwheel Diameter		7.12	7.12	8.5	11.5	15	7.12	8.5	11.5	15
		181	181	216	292	381	181	216	292	381
Weight		18	18	30	73	106	18	30	73	106
		8	8	14	33	48	8	14	33	48

*Available in buttweld only.

Features and Description of Flowserve Edward Stop-Check (Non-Return) Valves

Flowserve Edward stop-check (non-return) valves offer the same tight-sealing performance as Edward stop valves, and at the same time, give check valve protection in the event of fluid back flow. Edward stop-check valves are commonly used to prevent back flow from a header fed from two or more sources when there is a loss of pressure in one of the sources—for example, the boiler outlet to a common header or at the feedwater heater outlets.

Flite-Flow[®]

Angle

Globe

Equalizer

Flowserve Edward cast steel stop-check valves are equipped with an Equalizer pipe. Acting as an external pressure balancing pipeline, the Equalizer connects the zone above the disc with the lower pressure area in the valve outlet (see drawing above). This reduces pressure above the disc, and as a result, causes the higher pressure below the disc to raise the disc to full lift. The Equalizer helps reduce pressure drop and disc-piston movement and wear.

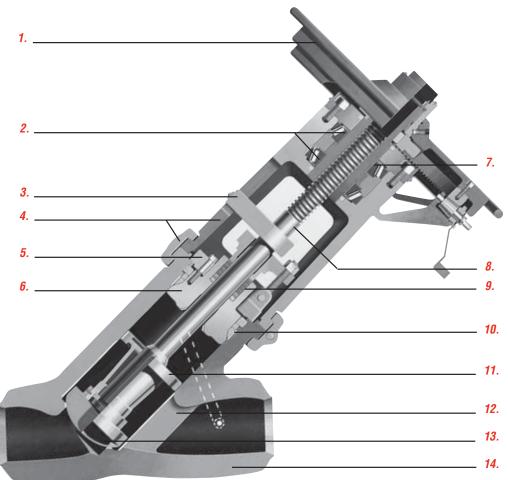
Other features are the same as those defined on page 73 for stop valves.

NOTE 1: Guide ribs are hardfaced on Flite-Flow and some angle pattern valves.

Parts Specification List for Edward Globe Valves, Stop-Check and Piston Lift Check

This is not a complete list. Construction and materials will vary between sizes and pressure classes and may be changed without notice. For a complete, accurate and itemized description of a particular valve, contact your Flowserve Edward valves sales representative.

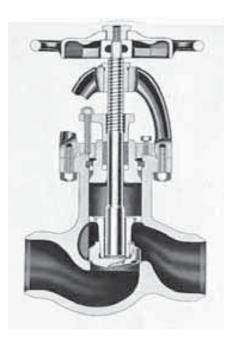
Description [®]	ASME/ASTM No.	ASME/ASTM No.	ASME/ASTM No.	ASME/ASTM No.
Body/Bonnet*	SA-216	SA-216	SA-217	SA-351
bouy/bonnot	Grade WCB	Grade WCC	Grade WC9	Grade CF8M
Disc	SA-105	SA-105	A-182	A-182
	_		Grade F22	Grade F316
Body-Guided Disc Nut	A-216	A-216	A-217	A-182
	Grade WCB	Grade WCB	Grade WC9	Grade F316
Stem	A-182	A-182	A-565	A-638
	Grade F6a	Grade F6a	Grade 616 HT	Grade 660 T2
Yoke Bushing	B-148	B-148	B-148	B-148
-	Alloy 95400	Alloy 95400	Alloy 95400	Alloy 95400
Packing Rings		Flexible Graphite inner rings ar	id suitable anti-extrusion rings.	I
Junk Rings	A-108 Grade 1018-20 MnPO ₄	A-108 Grade 1018-20 MnPO ₄	A-108 Grade 1018-20 MnPO ₄	A-182
	Plated	Plated	Plated	Grade F316/Stellite I.D.
Pressure Seal Gasket		Composite Press	ure Seal Gasket	1
	A CCO Overde 4140			0.100
Spacer Ring	A-668 Grade 4140	A-668 Grade 4140	A-668 Grade 4140	A-182 Grade F6 CL4
	MnPO ₄ Plated	MnPO ₄ Plated	MnPO ₄ Plated	
Gasket Retainer	SA-182	SA-182	A-565	A-638
	Grade F6 CL4	Grade F6 CL4	Grade 616 HT	Grade 660 T2
Bonnet Retainer	A-216	A-216	A-216	A-216
	Grade WCB	Grade WCB	Grade WCB	Grade WCB
Bonnet Retainer Studs	A-193	A-193	A-193	A-193
	Grade B7	Grade B7	Grade B7	Grade B7
Bonnet Retainer Nuts	A-194	A-194	A-194	A-194
bonnet metannet wats	Grade 2H	Grade 2H	Grade 2H	Grade 2H
	A-148	A-148	A-148	A-148
Gland	Grade 90-60	Grade 90-60	Grade 90-60	Grade 90-60/Chrome Plated
	Grade 90-00	Graue 90-00	Glade 90-00	Grade 90-00/Chronie Flated
Evo Bolt	A-193	A-193	A-193	A-193
Eye Bolt	Grade B7/Cad. Plated	Grade B7/Cad. Plated	Grade B7/Cad. Plated	Grade B7/Cad. Plated
Fue Delt Nute	A-194	A-194	A-194	A-194
Eye Bolt Nuts	Grade 2H/Cad. Plated	Grade 2H/Cad. Plated	Grade 2H/Cad. Plated	Grade 2H/Cad. Plated
	A-182	A-182	A-182	A-182
Eye Bolt Pins	Grade F6a	Grade F6a	Grade F6a	Grade F6a
	Class 4	Class 4	Class 4	Class 4
Stom Cuide Coller	A-515	A-515	A-515	A-515
Stem Guide Collar	Grade 70	Grade 70	Grade 70	Grade 70
Otom Onida Kan	A-331	A-331	A-331	A-331
Stem Guide Key	Grade 4140 HT	Grade 4140 HT	Grade 4140 HT	Grade 4140 HT
Vala	A-216	A-216	A-216	A-216
Yoke	Grade WCB	Grade WCB	Grade WCB	Grade WCB
Value Look Bing	A-216	A-216	A-216	A-216
Yoke Lock Ring	Grade WCB	Grade WCB	Grade WCB	Grade WCB
Note that Place Of the	A-193	A-193	A-193	A-193
Yoke Lock Ring Studs	Grade B7	Grade B7	Grade B7	Grade B7
	A-194	A-194	A-194	A-194
Yoke Lock Ring Nuts	Grade 2H	Grade 2H	Grade 2H	Grade 2H
	A-126	A-126	A-126	A-126
Impactor Handwheel	Class A	Class A	Class A	Class A
.	A-536	A-536	A-536	A-536
Crossarm, Handwheel	Grade 65-45-12	Grade 65-45-12	Grade 65-45-12	Grade 65-45-12
	A-536	A-536	A-536	A-536
Handwheel Bearing Nut	Grade 65-45-12	Grade 65-45-12	Grade 65-45-12	Grade 65-45-12
	A-182	A-182	A-565	A-638
Stem Collar	Grade F6a	Grade F6a	Grade 616 HT	Grade 660 T2
			ntact your Edward valves sales i	


(1) Through Class 2500, for Series 4500 valves, some construction differences exist. Contact your Edward valves sales representative for more information.

* Other material grades available on application.

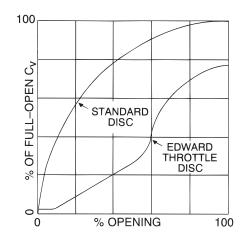
Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

Features and Description of Edward Flite-Flow[®] Globe Valves


For high-pressure/high-temperature installation, the Flite-Flow valve is capable of handling millions of pounds per hour of fluid flow–without sacrificing low-pressure drop or piping flexibility.

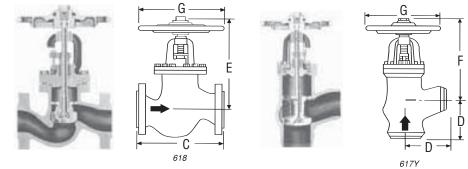
- 1. Impactor handwheel provides many times the closing force of an ordinary handwheel for positive seating. Impactogear, available on larger sizes, allows cycling by one man utilizing the air wrench adaptor.
- 2. Thrust bearings minimize torque requirements and eliminate side loading due to out-of-position orientation. Smoother operation and longer valve life are possible.
- 3. Stem guide collar prevents stem rotation and provides valve position indication.
- Yoke/Yoke lock ring the yoke is designed for ready access to the packing chamber, and the lock ring allows quick disassembly for maintenance.
- **5. Bonnet retainer** provides loading to effect a seal at the pressure seal gasket.
- **6. Bonnet** is precision machined, retains packing and provides an integral hardfaced stem backseat.

- 7. Yoke bushing material has low coefficient of friction that substantially reduces torque and thread wear and eliminates galling.
- 8. Stem has ACME threads, is machined to a fine finish and is heat treated for improved strength and hardness to resist wear.
- **9. Stem packing system** utilizes flexible graphite packing material with anti-extrusion rings for optimum sealability and life.
- **10. Composite pressure seal gasket** is a preloaded, pressure energized design for long, reliable service.
- **11. Disc piston** is body guided to eliminate misalignment, galling and stem bending.
- **12. Guide ribs** hardfaced on Flite-Flow and some angle patterns, provide body guiding for disc/piston assemblies.
- 13. Integral hardsurfaced seats both body and disc provide shutoff and long seat life.
- **14. Body** utilizes optimized flow passages to minimize flow direction changes and reduce pressure drop.


<u>74</u>

Special Application Valves

Flowserve - Edward Throttle Valves


Edward standard cast steel valves with the body-guided feature have excellent ability to handle flow at high-pressure differentials. However, for improved accuracy, cast globe and angle stop valves can be equipped with a special throttle disc. Disc shape provides good regulation over wide ranges of flow. When required, valves equipped with a throttle disc may also be ordered with a motor operator. Edward cast stop valves equipped with a throttle disc are identified by adding the suffix "K" to the standard valve figure number.

Comparison Curves of Typical Standard Disc with Throttle Disc

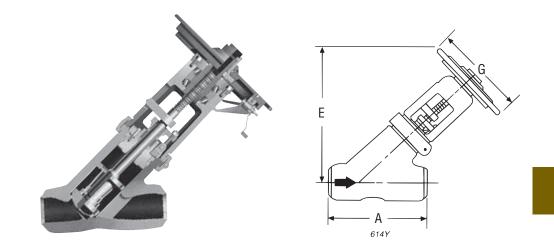
The standard stop valve disc gives rapid increases in flow for each increment of lift at low lifts and small increases in flow at higher lifts. This is not desirable in many applications where the valve is used for controlling flow rate. The conical projection on the throttle disc gives straight line control at the lower lifts as long as it remains in the seat. Once the cone lifts entirely out of the seat, it permits high capacity at high lifts with only moderate pressure drop penalty.

Standard Features

- Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- · Bolted or pressure-seal bonnet, OS & Y
- Globe or angle
- · Integral Stellite seat, disc and backseat
- Body-guided disc piston
- 13% chromium stainless steel stem
- · Asbestos-free graphitic packing
- Long Terne steel or composite pressure-seal gasket

Dimensions – Globe & Angle*

Pressure Class 600 (PN 110)


FIG.	NO.	ТҮРЕ	ENDS	BONNET	NPS (DN)			
STD CL	SPL CL	ITFE	ENDS	DONNET	NF3 (DN)			
616	—	Globe	Flanged	Bolted Pressure Seal	9 (200) thru 14 (250)			
616Y	716Y	Globe Butt Weld		Bolted Pressure Seal	8 (200) thru 14 (350)			
617	_	Angle	Flanged	Bolted Pressure Seal	8 (200) thru 14 (350), 24 (600), 28 (700) &			
617Y	717Y	Angle	Butt Weld	Bolted Pressure Seal	30 (750)			
618	—	Globe	Flanged	Bolted				
618Y	—	Globe	Butt Weld	Bolted	01/(65) thru $6/(150)$			
619	619 — Angle		Flanged	Bolted	2½ (65) thru 6 (150)			
619Y	—	Angle	Butt Weld	Bolted				

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 616/616Y, 617/617Y,	NPS	21⁄2	3	4	5	6	8	10	12	14
618/618Y, 619/619Y, 716Y, 717Y	DN	65	80	100	125	150	200	250	300	350
C. Essa to Essa, Claba e		13	14	17	20	22	26	31	33	35
C - Face to Face, Globe •		330	356	432	508	559	660	787	838	889
D. Contor to Faco Angle -		6.5	7	8.5	10	11	13	15.5	16.5	17.5
D - Center to Face, Angle •		165	178	216	254	279	330	394	419	445
E Contor to Top Cloba		16.2	16.7	20.1	24.8	28.4	34.3	39.7	43.6	47
E - Center to Top, Globe	ĺ	411	424	511	630	721	871	1008	1107	1194
F - Center to Top, Angle		14.4	14.6	17.7	21.4	24.2	28.8	32.9	36.1	38.8
r - Genter to Top, Angle		366	371	450	544	615	731	836	917	986
C Handwhaal/Handla Diamator**		12	12	14	16	16	20	26	30	30
G - Handwheel/Handle Diameter**	[305	305	356	406	406	508	660	762	762
Weight, Globe (Flanged)		110	135	245	425	525	900	1550	2200	2640
weight, Globe (Flanged)	ĺ	50	61	111	193	238	408	703	998	1198
Weight Clobe (Welding)		90	110	180	315	400	750	1200	1850	2250
Weight, Globe (Welding)		41	50	82	143	181	340	544	839	1021
Maight Apple (Flapped)		100	122	228	355	460	730	1230	1790	2120
Weight, Angle (Flanged)	ĺ	45	55	103	161	209	331	558	812	962
Weight Angle (Welding)		100	125	170	245	350	540	950	1450	1760
Weight, Angle (Welding)	ĺ	45	57	77	111	159	245	431	658	798

* Angle valves only. Also available in sizes 24, 28 and 30. Dimensions available upon request. ** Impactor handwheel is standard on all size valves.

• Center-to-end or end-to-end dimensions for welding and valves same as center-to-contact-face or contact-face-to-contact-face dimensions for flanged end valves.

Standard Features

- · Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- · Pressure-seal bonnet, OS & Y
- Y Pattern
- · Integral Stellite seat, disc and backseat
- Body-guided disc piston
- 13% chromium stainless steel stem
- · Asbestos-free graphite packing
- Spiral-wound or composite pressure-seal gasket

Dimensions – Flite-Flow®

Pressure Class 600 (PN 110)*

Fig.	No.	Туре	Ends	Bonnet	NPS (DN)
STD CL SPL CL		The	LIIUS	Donnet	
614***	—	Flite-Flow	Flanged	*Pressure Seal	2 (90) thru 22 (900)
614Y	714Y	Flite-Flow	Butt Weld	*Pressure Seal	3 (80) thru 32 (800)

* 3 and 4 bolted bonnet with asbestos-free spiral-wound gasket.

* Size 3 and 4 butt weld valves are Class 700.

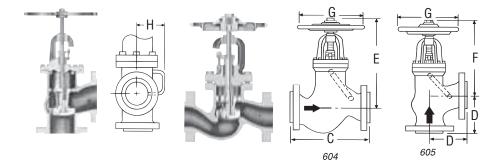

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 614Y/714Y, 614***	NPS	3	4	6	8	10	12	14	16	20	24	26	28	32
FIGURE NO. 0141/1141, 014	DN	80	100	150	200	250	300	250	400	500	600	650	700	800
A, - End to End, (Welding)		13	15.5	20	26	31	38	38	41	60	66	70	81.5	90
R ₁ - Ellu to Ellu, (Weldilig)		330	394	508	660	788	965	965	1041	1524	1676	1778	2070	2286
A Ease to Ease (Elanged)		16.75	21.25	29	33	39	45	45	52	*	*	*	*	*
A_2 - Face to Face, (Flanged)		425	540	737	838	991	1143	1143	1321					
E - Center to Top, (Open)		17.5	21.5	28.5	34	42	49	49	74	71	*	*	*	*
E - Center to Top, (Open)		445	546	724	864	1067	1245	1245	1880	1803				
G - Handwheel Diameter		12	14	16	20	26	30	30	48	48	*	*	*	*
d - Halluwileer Dialiteter		305	356	406	508	660	762	762	1219	1219]			
Weight, (Welding)		110	150	450	850	1400	2050	2050	5500	9200	*	*	*	*
weight, (weiding)		50	68	204	385	635	930	930	2495	4173]			
Weight (Flanged)		150	240	570	1000	1800	2450	2550	6500	*	*	*	*	*
Weight, (Flanged)		68	109	259	454	816	1111	1157	2948	1				

* Dimensions and information supplied upon request. ** Impactor handwheel standard on all Flite-Flow valves. *** Flanged valves are available in sizes 3 through 16.

Stop-Check (Non-Return) Valves, Class 600

Standard Features

- Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- · Bolted or pressure-seal bonnet OS & Y
- Globe or angle
- Integral Stellite seat, disc and backseat
- Body-guided disc piston
- 13% chromium stainless steel stem
- · Asbestos-free graphitic packing
- Long terne' steel or composite pressure seal gasket
- · Equipped with equalizer

Dimensions – Globe & Angle*

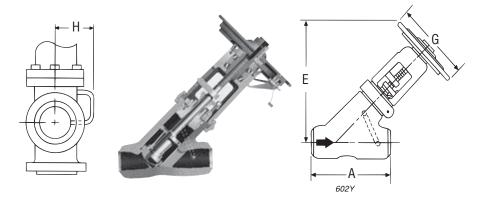
STD CL SPL CL TYPE ENDS

Pressure Class 600 (PN 110)

FIG. NO.

604	—	Globe	Flanged	Bolted	
604Y	—	Globe	Butt Weld	Bolted	2½ (65) thru 6 (150)
605	—	Angle	Flanged	Bolted	2 % (05) till 0 (150)
605Y	—	Angle	Butt Weld	Bolted	
606	—	Globe	Flanged	Pressure Seal	8 (200) thru 14 (350)
606Y	706Y	Globe	Butt Weld	Pressure Seal	o (200) tillu 14 (330)
607	—	Angle	Flanged	Pressure Seal	8 (200) thru 14 (350),
607Y	607Y 707Y Ang		Butt Weld	Pressure Seal	24 (600), 28 (700) & 30 (750)

BONNET


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

NPS (DN)

Figure No. 604/604Y, 605/605Y,	NPS	21⁄2	3	4	5	6	8	10	12	14
606/606Y, 607/607Y, 706Y, 707Y	DN	65	80	100	125	150	200	250	300	350
0 Fara ta Fara Olaba**		13	14	17	20	22	26	31	33	35
C - Face to Face, Globe**		330	356	432	508	559	660	787	838	889
D - Center to Face, Angle**		6.5	7	8.5	10	11	13	15.5	16.5	17.5
D - Genter to Face, Angle		165	178	216	254	279	330	394	419	445
E - Center to Top, Globe		16.2	16.7	20.1	24.8	28.4	34.3	39.7	43.6	47
E - Genter to Top, Globe		411	424	511	630	721	871	1008	1107	1194
E Contor to Top Angle		14.4	14.6	17.7	21.4	24.2	28.8	32.9	36.1	38.8
F - Center to Top, Angle		366	371	450	544	615	731	836	917	986
G - Handwheel Diameter#		12	12	14	16	16	20	26	30	30
G - Halluwileer Dialiteter#		305	305	356	406	406	508	660	762	762
H - Clearance for Equalizer		8.7	8.5	10	9.6	11	11.8	13	13.7	15.7
H - Clearance for Equalizer		221	216	254	244	279	300	330	348	399
Weight, Globe (Flanged)		110	135	220	425	540	960	1540	2200	2680
weight, diobe (Flanged)		50	61	112	193	245	435	699	998	1216
Weight, Globe (Welding)		84	110	185	335	410	750	1270	1850	2250
weight, diobe (weiding)		38	50	84	152	186	340	596	839	1021
Weight, Angle (Flanged)		105	125	225	325	460	750	1200	1790	2150
		48	57	102	147	209	340	544	812	975
Weight, Angle (Welding)		80	90	168	245	350	560	950	1450	1760
weight, Angle (welding)		36	41	76	111	159	254	431	667	798

* Angle valves only. Also available in sizes 24, 28 and 30. Dimensions available upon request. ** Center-to-end or end-to-end dimensions for welding and valves same as center to contact-face or contact-face-to-contact-face dimensions for flanged end valves. # Impactor handwheel is standard on all size valves. Refer to page 73 for materials of construction.

Stop-Check (Non-Return) Valves, Class 600

Standard Features

- Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- · Bolted or pressure-seal bonnet, OS & Y
- Y Pattern
- Integral Stellite seat, disc and backseat
- Body-guided disc piston
- 13% chromium stainless steel stem
- Asbestos-free graphitic packing
- Spiral wound or composite pressure seal gasket
- · Equipped with equalizer

Dimensions – Flite-Flow®

Pressure Class 600 (PN 110)*

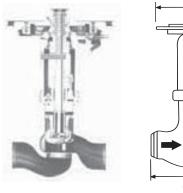
Fig.	No.	Type	Ends	Bonnet	NPS (DN)
STD CL SPL CL		туре	Ellus	Donnet	NF3 (DN)
***602 —		Flite-Flow Flanged		Pressure Seal*	3 (80) thru 32 (800)
602Y	702Y	Flite-Flow	Butt Weld	Pressure Seal*	3 (00) thru 32 (000)

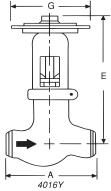
* Size 3 & 4 - Bolted bonnet with asbestos-free spiral-wound gasket.

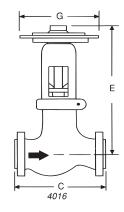
* Size 3 & 4 Butt weld valves are Class 700.

Eiguro No. 602V/702V ***602	NPS	3	4	6	8	10	12	14	16	20	24	26	28	32
Figure No. 602Y/702Y, ***602	DN	80	100	150	200	250	300	250	400	500	600	650	700	800
A1 End to End (Malding)		13	15.5	20	26	31	38	38	41	60	66	70	81.5	90
A1 - End to End, (Welding)		330	394	508	660	787	965	965	1041	1524	1676	1778	2070	2286
AQ Face to Face (Flanged)		16.75	21.25	29	33	39	45	45	52	*	*	*	*	*
A2 - Face to Face, (Flanged)		425	540	737	838	991	1143	1143	1321	1				
E Contor to Top (Open)		17.5	21.5	28.5	34	42	49	49	74	71	*	*	*	*
E - Center to Top, (Open)		445	546	724	864	1067	1245	1245	1880	1803]			
C. Handwhaal Diamatar		12	14	16	20	26	30	30	48	48	*	*	*	*
G - Handwheel Diameter		305	356	406	508	660	762	762	1219	1219]			
H. Equalizar Clearance		7	9	10	12	13	14	14	22	24	*	*	*	*
H - Equalizer Clearance		178	229	254	305	330	356	356	559	610	1			
Maight (Malding)		110	150	450	850	1400	2050	2050	5500	9200	*	*	*	*
Weight, (Welding)		50	68	204	385	635	930	930	2495	4173	1			
Weight (Flanged)		150	240	570	1000	1800	2850	3100	6500	*	*	*	*	*
Weight, (Flanged)		68	109	259	454	816	1293	1406	2948		1			~

* E, G and other dimensions and information supplied upon request. ** Impactor handwheel standard on all Flite-Flow valves.


*** Flanged valves available in sizes 3 thru 16.


Refer to page 73 for materials of construction.


Black numerals are in inches and pounds

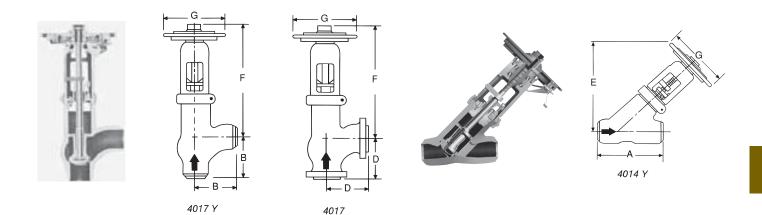
Colored numerals are in millimeters and kilograms

Standard Features

- Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- Pressure-seal bonnet, OS & Y
- Y Pattern, globe and angle design
- · Integral Stellite seat, disc and backseat
- Body-guided disc piston
- 13% chromium stainless steel stem
- · Asbestos-free graphitic packing
- Yoke bushing thrust bearings size 5 and larger

Dimensions – Globe & Angle

Pressure Class 900 (PN 150)*


Fig.	No.	Туре	Ends	NPS (DN)				
STD CL	SPL CL	The	Ellus	NF3 (DN)				
4016		Globe	Flanged	2(90) thru $14(250)$				
4016Y	4316Y	Globe	Butt Weld	- 3 (80) thru 14 (350)				
4017	—	Angle	Flanged	3 (80) thru 24 (600)				
4017Y	4317Y	Angle	Butt Weld	3 (80) till 24 (800)				
4014		Flite-Flow	Flanged	2(90) thru 16(400)				
4014Y	4314Y	Flite-Flow	Butt Weld*	3 (80) thru 16 (400)				

Size 3 and 4 Butt weld Flite-Flow valves are class 1100.

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 4016/4016Y, 4017/4017Y,	NPS	3	4	5	6	8	10	12	14
4316Y, 4317Y	DN	80	100	125	150	200	250	300	350
A End to End (Walding)		15	18	22	24	29	33	38	40.5
A - End to End (Welding)		381	457	559	610	737	838	965	1029
B - Center to Face (Welding)		7.5	9	11	12	14.5	16.5	19	19
B - Genter to Face (Welding)		190	229	279	305	368	419	483	483
C - Face to Face (Flanged)		15	18	22	24	29	33	38	40.5
C - Face to Face (Flatiged)		381	457	559	610	737	838	965	1029
D. Contor to Essa (Elanged)		7.5	9	11	12	14.5	16.5	19	21.75
D - Center to Face (Flanged)		190	229	279	305	368	419	483	552
Contar to Tan Clabs (Onen)		22.5	26.25	30.6	37	46	54.75	64.75	71.25
E - Center to Top, Globe (Open)		572	667	777	940	1168	1391	1645	1810
E Contar to Tan Angle (Onen)		20.4	23.75	28.25	34.25	43.4	49.25	60	60
F - Center to Top, Angle (Open)		518	603	718	870	1102	1251	1524	1524
G - Handwheel Diameter*		16	16	20	20	28	28	36	36
G - Halluwileel Dialitetel		406	406	508	508	711	711	914	914
Waight Cloba (Flanged)		210	310	610	800	1570	2410	3700	4600
Weight, Globe (Flanged)		95	141	277	363	712	1093	1665	2086
Waight Cloba (Walding)		175	235	500	620	1390	2300	3100	3850
Weight, Globe (Welding)		79	107	227	281	630	1043	1395	1746
Weight Angle (Flanged)		206	284	540	710	1360	2103	3010	3060
Weight, Angle (Flanged)		93	129	245	322	612	946	1365	1388
Weight Angle (Welding)		150	210	410	552	1035	1690	2555	2580
Weight, Angle (Welding)		68	95	185	250	466	761	1159	1170

* Impactor handwheel is standard on all valves.

Dimensions – Angle

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 4017/4017V 4217V	NPS	16	18	20	24
Figure No. 4017/4017Y, 4317Y	DN	400	450	500	600
P. Contor to End (Walding)		26	**	32.5	39
B - Center to End (Welding)	[660		825	991
Contor to Top Angle		78.5	**	95	102
F - Center to Top, Angle		1994		2413	2591
G - Handwheel Diameter*		48	**	72	72
G - Halluwileel Dialileter	[1219		1829	1829
Maight Apple (Malding)		4440	**	8150	13,750
Weight, Angle (Welding)		2014		3697	6237

** Size 18 angle - available upon request.

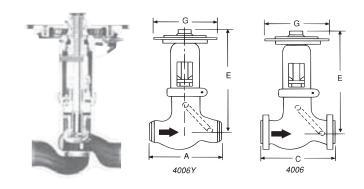

Dimensions – Flite-Flow®

Figure No. 4014/4014Y, 4314Y	NPS	3	4	6	8	10	12	14	16
yure No. 4014/40141, 43141		80	100	150	200	250	300	350	400
A ₁ - End to End (Welding)		17	18.5	20	26	31	38	38	44.5
		432	479	508	660	787	965	965	1130
A Face to Face (Flanged)		22.25	23.75	30	38	44	50	51	58
A ₂ - Face to Face (Flanged)		565	603	762	965	1118	1270	1295	1473
E Contor to Top (Open)		20	25	35	44	51	60	60	73
E - Center to Top (Open)		508	635	889	1118	1295	1524	1524	1854
G - Handwheel Diameter*		16	16	20	28	28	36	36	48
d - Halluwileer Dialiteter		406	406	508	711	711	914	914	1219
Weight (Welding)		190	275	550	1150	2100	3400	3400	5550
Weight (Welding)		86	125	249	522	953	1542	1542	2517
Weight (Flanged)		250	370	775	1550	2650	4150	4550	6950
		113	168	352	703	1202	1882	2064	3152

Note: Size 3 and 4 Buttweld Class 900 Flite-Flow Valves are Class 1100. *Impactor handwheel is standard on all valves. *Refer to page 73 for materials of construction.*

Stop-Check (Non-Return) Valves, Class 900

Pressure Class 900 (PN 150)*

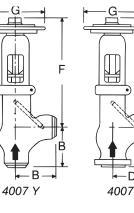
FIG.	FIG. NO. STD CL SPL CL TYPE		ENDS	NPS (DN)
STD CL			ENDS	NF3 (DN)
4006	—	Globe	Flanged	2(90) thru 14(250)
4006Y	4306Y	Globe	Butt Weld	3 (80) thru 14 (350)
4007	_	Angle	Flanged	2 (90) thru 24 (600)
4007Y	4307Y	Angle	Butt Weld	3 (80) thru 24 (600)
4002	4002 — Flite 4002Y 4302Y Flite		Flanged	3 (80) thru 16 (400)
4002Y			Butt Weld*	3 (00) tillu 10 (400)

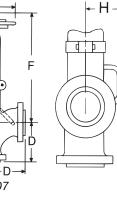
* Size 3 and 4 Butt weld Flite-Flow valves are Class 1100.

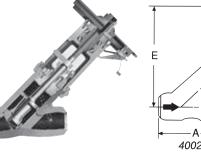
Standard Features

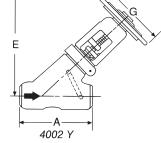
- Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- Pressure-seal Bonnet, OS & Y
- Y Pattern, globe and angle design
- Integral Stellite seat, disc and backseat
- Body-guided disc piston
- 13% chromium stainless steel stem
- Asbestos-free graphitic packing
- Equipped with equalizer
- Yoke bushing thrust bearings

Dimensions – Globe & Angle


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


Figure No. 4006/4006Y,	NPS	3	4	5	6	8	10	12	14
4007/4007Y, 4306Y, 4307Y	DN	80	100	125	150	200	250	300	350
A End to End (Walding)		15	18	22	24	29	33	38	40.5
End to End (Welding)		381	457	559	610	737	838	965	1029
P. Contor to End (Wolding)		7.5	9	11	12	14.5	16.5	19	19
B - Center to End (Welding)		190	22	279	305	368	419	483	483
C Face to Face (Flanged)		15	18	22	24	29	33	38	40.5
C - Face to Face (Flanged)		381	457	559	610	737	838	965	1029
D. Contar to Food (Flanged)		7.5	9	11	12	14.5	16.5	19	21.75
D - Center to Face (Flanged)		190	229	279	305	368	419	483	552
E Contor to Ton Clobe (Onon)		22.5	26.25	30.63	37	46	54.75	64.75	71.25
E - Center to Top, Globe (Open)	ĺ	572	667	778	940	1168	1391	1645	1810
E Contor to Top Angle (Open)		20.38	23.75	28.25	34.25	43.38	49.25	60	62.75
F - Center to Top, Angle (Open)	ĺ	518	603	718	870	1102	1251	1524	1594
C Handwhaal Diamatar*		16	16	20	20	28	28	36	36
G - Handwheel Diameter*	ĺ	406	406	508	508	711	711	914	914
		7.5	7.63	9.75	10.75	12.5	12.88	14.75	17.38
H - Clearance for Equalizer	ĺ	190	194	248	273	318	327	375	441
Waight Clabs (Flanged)		220	314	615	800	1570	2425	3700	4600
Weight, Globe (Flanged)	ĺ	100	142	279	363	712	1100	1665	2087
Waight Claba (Walding)		175	245	500	642	1400	2300	3100	4750
Weight, Globe (Welding)	ĺ	79	111	227	291	635	1043	1406	2155
Maight Apple (Flanged)		206	284	540	690	1360	2103	3010	3060
Weight, Angle (Flanged)		93	129	245	313	617	954	1365	1388
		150	215	410	552	1035	1600	2555	2580
Weight, Angle (Welding)	ĺ	68	98	186	250	469	725	1159	1170


* Impactor handwheel is standard on all valves.


Stop-Check (Non-Return) Valves, Class 900

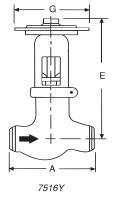
Dimensions – Angle

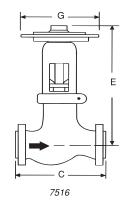
Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Eiguro No. 4007/4007V 4207V	NPS	16	18	20	24
Figure No. 4007/4007Y, 4307Y	DN	400	450	500	600
B - Center to End (Welding)		26	**	32.5	39
B - Center to End (Weiding)		660		825	991
E Contar to Top Angle		78.5	**	95	102
F - Center to Top, Angle		1994		2413	2591
G - Handwheel Diameter*		48	**	72	72
		1219		1829	1829
H Clearance for Equalizer		20	**	21.5	30
H - Clearance for Equalizer		50.8		546	762
Weight Angle (Welding)		4960	**	8150	13,750
Weight, Angle (Welding)		2250		3697	6237

** Size 18" Angle - Available upon request.

Dimensions – Flite-Flow


Figure No. 4002/4002X 4202X	NPS	3	4	6	8	10	12	14	16
Figure No. 4002/4002Y, 4302Y	DN	80	100	150	200	250	300	350	400
A - End to End (Wolding)		17	18.5	20	26	31	38	38	44.5
A ₁ - End to End (Welding)		432	470	508	660	787	965	965	1130
A Face to Face (Flanged)		22.25	23.75	30	38	44	50	51	58
A ₂ - Face to Face (Flanged)		565	603	762	965	1118	1270	1295	1473
C Contar to Tan (Onen)		20	25	35	44	51	60	60	73
E - Center to Top (Open)		508	635	889	1118	1295	1524	1524	1854
C Handwheel Diameter*		16	16	20	28	28	36	36	48
G - Handwheel Diameter*		406	406	508	711	711	914	914	1219
H - Equalizar Clearance		9	9.3	10	12.5	16	15	15	25.75
H - Equalizer Clearance		229	236	254	318	406	381	381	654
Maight (Malding)		190	275	555	1150	2100	3400	3400	5550
Weight (Welding)		86	125	252	522	953	1542	1542	2517
Weight (Flanged)		250	370	775	1550	2650	4150	4550	6950
		113	168	352	703	1202	1882	2064	3153

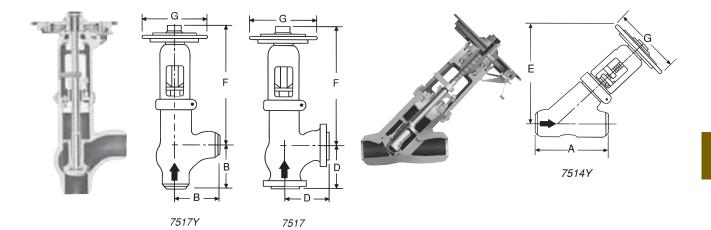

Note: Size 3 and 4 Buttweld Class 900 Flite-Flow valves are Class 1100.

* Impactor handwheel is standard on all valves.

Pressure Class 1500 (PN 260)*

Fig. No. STD CL SPL CL		Туре	Ends	NPS (DN)
		Type	Ellus	NF3 (DN)
7514Y	2014Y	Flite-Flow	Butt Weld*	3 (80) thru 24 (600)
7516	7516 —		Flanged	2½ (65) thru 14 (350)
7516Y	2016Y	Globe	Butt Weld	2 ⁹ 2 (05) tillu 14 (350)
7517	517 — Angle		Flanged	2½ (65) thru 24 (600)
7517Y 2017Y		Angle	Butt Weld	272 (05) till u 24 (000)

Standard Features


- Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- Pressure-seal bonnet, OS & Y
- Y Pattern, globe and angle design
- Integral Stellite seats and backseat
- · Body-guided disc piston
- 13% chromium stainless steel stem
- · Asbestos-free graphitic packing
- Yoke bushing thrust bearings size 5 and larger

Dimensions – Globe & Angle

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 7516/7516Y,	NPS	21⁄2	3	4	5	6	8	10	12	14
2016Y 7517/7517Y, 2017Y	DN	65	80	100	125	150	200	250	300	350
A - End to End (Welding)		13	15	18	22	24	29	33	38	40.5
A - Ellu lo Ellu (Welully)		330	381	457	559	610	737	838	965	1029
B - Center to End (Welding)		6.5	7.5	9	11	12	14.5	16.5	19	20.25
B - Genter to End (Weiding)		165	190	229	279	305	368	419	483	514
C - End to End (Flanged)		16.5	18.5	21.5	26.5	27.75	32.75	39	44.5	49.5
G - Ellu to Ellu (Flallgeu)		419	470	546	673	705	832	991	1130	1257
D. Contor to End (Flanged)		8.25	9.25	10.75	13.25	13.88	16.38	19.5	22.25	24.75
D - Center to End (Flanged)		210	235	273	337	353	416	495	565	629
E Contor to Ton Cloba (Onon)		19.25	22.5	26.25	30.63	36.5	48.75	59.5	70	70
E - Center to Top, Globe (Open)		489	572	667	778	927	1238	1511	1778	1778
F - Center to Top, Angle (Open)		18	20.4	23.75	28.25	34.75	45.75	56	66.3	66.75
F - Genter to Top, Aligie (Open)		457	518	603	718	883	1162	1422	1684	1695
G - Handwheel Diameter*		14	16	16	20	20	28	36	36	48
G - Halluwileer Dialiteter		356	406	406	508	508	711	914	914	1219
Weight, Globe (Flanged)		167	260	385	760	960	1800	3150	4910	5900
weight, dibbe (Flanged)		76	118	175	345	435	816	1429	2227	2676
Weight, Globe (Welding)		90	175	270	525	700	1620	2600	3710	4850
weight, dibbe (weidhig)		41	79	122	238	317	735	1179	1683	2200
Weight, Angle (Flanged)		153	230	330	730	865	1580	2780	4100	4850
		69	104	150	331	392	717	1261	1860	2200
Weight Angle (Welding)		80	150	255	510	670	1250	2200	2900	3800
Weight, Angle (Welding)		36	68	116	231	304	567	998	1315	1724
									-	

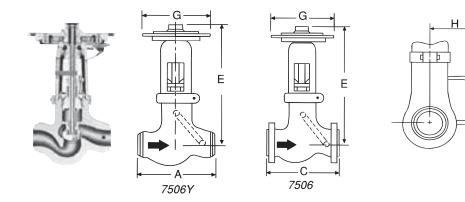
*Impactor handle is standard on size 2½ Globe and Angle valves. *Impactor handwheel is standard on all other size Globe and Angle valves and all Flite-Flow valves. *Impactogear is available on size 8 and larger Globe, Angle and Flite-Flow valves.

Dimensions – Globe & Angle

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Eiguro No. 7617/7617V 2017V	NPS	16	18	20	24
Figure No. 7517/7517Y, 2017Y	DN	400	450	500	600
B - Center to End (Welding)		23.5	23.5	28.5	35.5
		597	597	724	902
C. Contor to Ton Angle		77.5	77.5	84	103
F - Center to Top, Angle		1969	1969	2134	2616
G - Handwheel Diameter*		48	48	72	72
d - Halluwileel Dialitetel		1219	1219	1829	1829
Weight, Angle (Welding)		6600	6800	9500	16,200
		2994	3084	4309	7348

Dimensions – Flite-Flow®


Figure No. 7514Y/2014Y	NPS	3	4	6	8	10	12	14	16	18	20	24
	DN	80	100	150	200	250	300	350	400	450	500	600
A End to End (Molding)		17	18.5	27.75	30	36.25	43	41	54	63	54.5	59.5
A - End to End (Welding)		432	470	705	762	921	1092	1041	1372	1600	1384	1511
E Contor to Top (Open)		20	25	34.25	45	53.5	60.75	60.75	78.5	78.5	96	96
E - Center to Top (Open)		508	635	870	1143	1359	1543	1543	1994	1994	2438	2438
G - Handwheel Diameter*		16	16	20	28	36	36	36	48	48	72	72
G - Handwheel Diameter		406	406	508	711	914	914	914	1219	1219	1829	1829
Weight (Welding)		210	300	700	1550	2725	4220	4300	7650	8390	10,500	16,800
		95	136	318	702	1236	1914	1950	3470	3806	4763	7620

Notes: Size 3 and 4 Buttweld Class 1500 Flite-Flow valves are Class 1800.

*Impactor handle is standard on size 2½ Globe and Angle valves. *Impactor handwheel is standard on all other size Globe and Angle valves and all Flite-Flow valves. *Impactogear is available on size 8 and larger Globe, Angle and Flite-Flow valves.

Stop-Check (Non-Return) Valves, Class 1500

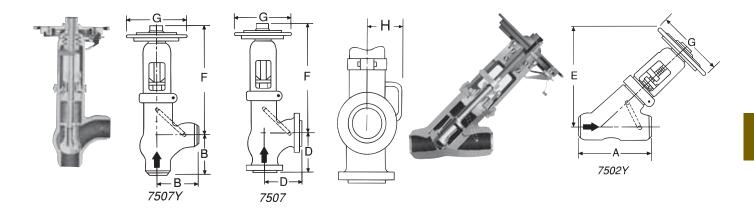
Pressure Class 1500 (PN 260)*

Standard Features

- Bodies and bonnets are cast steel (WCB, WCC, WC9, CF8M)
- Pressure-seal bonnet, OS & Y
- Y Pattern, globe or angle design
- · Integral Stellite seats and backseat
- · Body-guided disc piston
- 13% chromium stainless steel stem
- Asbestos-free graphitic packing
- Equipped with equalizer
- Yoke bushing thrust bearings size 5 and larger

Dimensions – Globe & Angle

FIG	FIG. NO.		ENDS	NPS (DN)			
STD CL	SPL CL	SPL CL					
7502Y	2002Y	Flite-Flow	Butt Weld*	3 (80) thru 24 (600)			
7506	—	Globe	Flanged	2½ (65) thru 14 (350)			
7506Y	2006Y	Globe	Butt Weld	2 /2 (05) tillu 14 (550)			
7507	-	Angle	Flanged	2½ (65) thru 24 (600)			
7507Y	2007Y	2007Y Angle		2 /2 (00) till 24 (000)			
* Size 2 and	A Buttwold Elito	Elow valvas ara C	lace 1800				


Size 3 and 4 Buttweld Flite-Flow valves are Class 1800.

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 7506/7506Y,	NPS	21⁄2	3	4	5	6	8	10	12	14
7507/7507Y, 2006Y, 2007Y	DN	65	80	100	125	150	200	250	300	350
A End to End (Molding)		13	15	18	22	24	29	33	38	40.5
A - End to End (Welding)		330	381	457	559	610	737	838	965	1029
P. Contor to End (Wolding)		6.5	7.5	9	11	12	14.5	16.5	19	20.25
B - Center to End (Welding)		165	190	229	279	305	368	419	483	514
C Face to Face (Flanged)		16.5	18.5	21.5	26.5	27.75	32.75	39	44.5	49.5
C - Face to Face (Flanged)		419	470	546	673	705	832	991	1130	1257
D. Conter to Face (Flanged)		8.25	9.25	10.75	13.25	13.88	16.38	19.5	22.25	24.75
D - Center to Face (Flanged)		210	235	273	337	353	416	495	565	628
E Contar to Tan Clabo		19.25	22.5	26.25	30.63	36.5	48.75	59.5	70	70
E - Center to Top, Globe		489	572	667	778	927	1238	1511	1778	1778
E Contor to Ton Angle		18	20.38	23.75	28.25	34.75	45.75	56	66.3	66.75
F - Center to Top, Angle		457	518	603	718	883	1162	1422	1684	1695
C Uandurbaal Diamatar*		14	16	16	20	20	28	36	36	48
G - Handwheel Diameter*		356	406	406	508	508	711	914	914	1219
		6.75	7.75	7.75	10	10.75	12.75	14	15	17.38
H - Clearance for Equalizer		171	197	197	254	273	324	356	381	441
Weight Clabs (Flanged)		167	270	385	770	960	1800	3150	4910	5900
Weight, Globe (Flanged)		76	122	175	349	435	816	1429	2227	2676
Maight Clabs (Malding)		90	180	270	570	710	1470	2600	3710	4850
Weight, Globe (Welding)		41	82	122	258	322	667	1179	1683	2200
Waight Apple (Flapped)		153	230	330	730	865	1580	2780	4100	4850
Weight, Angle (Flanged)		69	104	149	331	392	717	1261	1860	2200
Maight Apple (Malding)		77	160	255	510	585	1250	2200	2900	3800
Weight, Angle (Welding)		35	73	116	231	265	567	998	1315	1724

*Impactor handle is standard on size 2½ Globe and Angle valves. *Impactor handwheel is standard on all other size Globe and Angle valves and all Flite-Flow valves. *Impactogear is available on size 8 and larger Globe, Angle and Flite-Flow valves.

Stop-Check (Non-Return) Valves, Class 1500

Dimensions – Angle

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

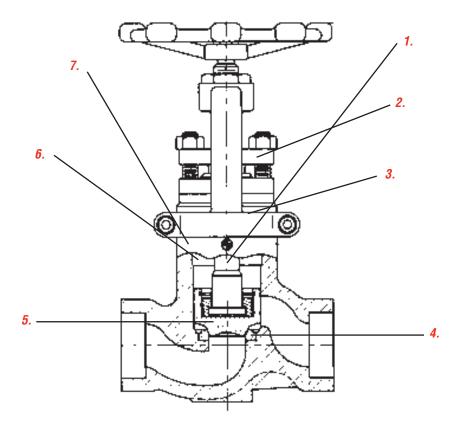
Figure No. 7507/7507Y, 2007Y	NPS	16	18	20	24
Figure No. 7507/15071, 20071	DN	400	450	500	600
B - Center to End (Welding)		23.5	23.5	28.5	35.5
B - Genter to End (Weiding)		597	597	724	902
E Contor to Top Angle		77.5	77.5	84	103
F - Center to Top, Angle		1969	1969	2134	2616
G - Handwheel Diameter*		48	48	72	72
		1219	1219	1829	1829
H Clearance for Equalizer		19.5	19.5	23	28.5
H - Clearance for Equalizer		495	495	584	724
Weight, Angle (Welding)		6600	6800	9500	16,200
		2994	3084	4309	7348

Dimensions – Flite-Flow

Figure No. 7502Y, 2002Y	NPS	3	4	6	8	10	12	14	16	18	20	24
Figure No. 75021, 20021	DN	80	100	150	200	250	300	350	400	450	500	600
A End to End (Walding)		17	18.5	27.75	30	36.25	43	41	54	63	54.5	59.5
A - End to End (Welding)		432	470	705	762	921	1092	1041	1372	1600	1384	1511
E - Center to Top		20	25	34.25	45	53.5	60.75	60.75	78.5	78.5	96	96
		508	635	870	1143	1359	1543	1543	1994	1994	2438	2438
G - Handwheel Diameter*		16	16	20	28	36	36	36	48	48	72	72
G - Handwheer Diameter		406	406	508	711	914	914	914	1219	1219	1829	1829
H - Equalizer Clearance		9	10	10.75	12.75	15.75	16.5	16.5	19.5	19.5	28	28
H - Equalizer Clearance		229	254	273	324	400	419	419	495	495	711	711
Weight (Welding)		210	300	720	1600	2820	4260	4280	8450	8400	10,500	11,500
weight (weiding)		95	136	327	726	1279	1932	1941	3833	3810	4763	5216

Note: Size 3 and 4 Buttweld Class 1500 Flite-Flow valves are Class 1800.

*Impactor handle is standard on size 2½ Globe and Angle valves. *Impactor handwheel is standard on all other size Globe and Angle valves and all Flite-Flow valves. *Impactogear is available on size 8 and larger Globe, Angle and Flite-Flow valves. Refer to page 73 for materials of construction.



Page intentionally left blank

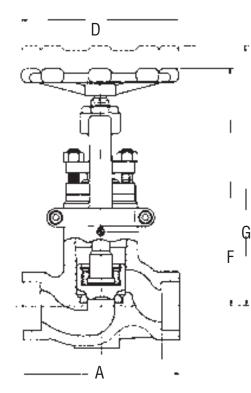
Anchor/Darling Globe Valves

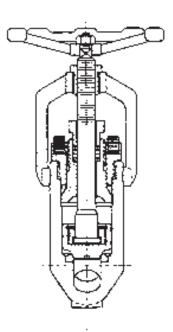
Features and Description of Anchor/Darling 800 Series Globe Valves

- Oversized stem provides stronger disc-to-stem connection and reduces packing wear through increased stiffness.
- 2. Graphite stem packing provides better sealing and longer packing life.
- **3. ADVanseal pressure** sealing system eliminates leakage, reduces maintenance and is more cost effective.
- **4. Seat ring** is solid, hardened material (Stellite or non-Cobalt) and is fully shouldered and brazed in place.
- 5. Disc is body guided and solid hardened material (Stellite or non-Cobalt).
- 6. Machined backseat provides additional packing protection.
- Investment cast body produces a smooth flow transition, minimizes flow turbulence resulting in higher Cv's. Pressure seal bonnet eliminates leakage.

Parts Specification List for Anchor/Darling 800 Series Globe Valves

Standard Features


- Available body material SA216-WCB SA351-CF8M
- Investment cast for smooth flow
- Rising stem design
- · One-piece body and bonnet


Anchor/Darling 800 Series globe valves for nuclear service are normally furnished in Class 800. Other interpolated pressure classes are also available on application. Parts shown are not applicable to all 800 Series valves. Construction and materials for nuclear valves may vary depending upon customer design specifications. For a complete, accurate and itemized description of a particular valve, contact your local Flowserve valves sales representative.

Description	ASME/ASTM No.	ASME/ASTM No.
Body	SA216-WCB	SA351-CF8M
Stem	A564-630-1075	A564-630-1075
Disc	SA564-630-1075	SA564-630-1075
Seat	A276-S21800A	A276-S21800A
End Rings	Braided Graphite	Braided Graphite
Packing Rings	Grafoil	Grafoil
Gland Retainer	A564-630-1075	A564-630-1075
Gland Adjusting Screw	AISI 300	AISI 300
Yoke Bushing	B21-C464-H02	B21-C464-H02
Handwheel	A351-CF8M	A351-CF8M
Stem Nut	A194-2H	A194-2H

800 Series Stop Valves – T Pattern, Class 800

Features

- Pressure Class 800
 (Intermediate)
- · Investment cast body
- Body-guided solid hard-faced disc; non-cobalt standard
- Non-cobalt seat ring; standard
- Oversized stem
- ADVanseal[®] pressure seal
- · Machined backseat

Dimensions – Globe

Pressure	Class	800	(PN	130))
----------	--------------	-----	-----	------	---

Fig. No.	Туре	Ends	NPS <mark>(DN)</mark>
UGB24S	Globe	Socket Weld	½ (15) thru 2 (50)
UGB24U	Globe	Butt Weld	½ (15) thru 2 (50)

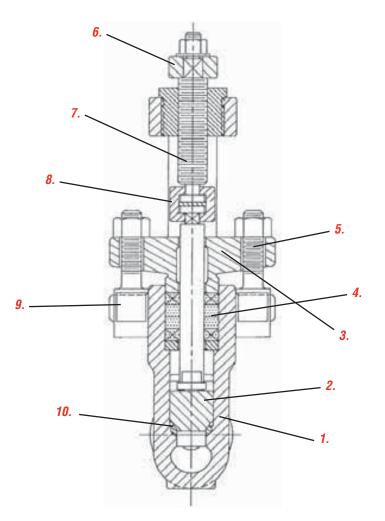

Black numerals are in inches and pounds
Colored numerals are in millimeters and kilograms

Figure No. IICP245/IICP24II	NPS	1/2	3⁄4	1	1½	2
Figure No. UGB24S/UGB24U	DN	15	20	25	40	50
٥		3.7	3.7	4.8	6.3	7.0
A		94	94	122	160	178
D		3.0	3.0	4.0	6.0	9.0
		76	76	102	152	229
F		5.4	5.4	6.9	8.3	9.4
F	F		137	175	211	239
G		5.8	5.8	7.4	9.0	10.4
		147	147	188	229	264
Weight Approx (lbs.)		4.0	4.0	6.0	13.0	20.0
Weight Approx (lbs.)		1.8	1.8	2.7	5.9	9.1
Cv		4.5	4.5	8	22	36

Refer to page 91 for materials of construction.

Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

Features and Description of 1878 Series Globe Valve

Standard Valve Features

- A one-piece rugged, low-profile, precision cast body/yoke assembly, manufactured using the latest investment casting techniques, offering smooth flow passages, not available with forged body valves.
- 2. Four distinct disc styles are offered either from the factory or easily fieldconverted from customer inventory.
 - A. Quick-open plug type
 - B. Parabolic
 - C. Cage type

A circular plate below the handwheel nut indicates the type of disc.

- 3. A sturdy self-aligning gland flange ensures positive loading of the packing and sealing integrity.
- 4. Expanded graphite packing with braided graphite end rings is standard. Live loaded packing is available as an option.
- Large packing gland bolts provide positive sealing and are easily removed for service.
- 6. The T-handle is made of stainless steel and can be locked open or closed, if necessary. The 2" full ported valves use an impactor T-handle.
- 7. A large-diameter upper stem is utilized to provide ease of operation and is everlubed to minimize friction.

- 8. A stem clamp couples the rotating upper stem with the non-rotating lower stem and also serves as a position indicator.
- 9. The lower non-rotating stem provides greater packing longevity than valves using rotating stems and has a T-head design, allowing ease of disc removal. Other competitive valves offering a stem-disc assembly are more costly and difficult to service.
- 10. The seat ring is non-Cobalt material that is furnace blazed into the body using a high-temperature nickel alloy. The disc is non-Cobalt material and is fully body-guided for proper seat alignment. Optional Cobalt-based seat and disc materials are available on special order.

Parts Specification List for Anchor/Darling 1878 Series Globe Valves

Standard Features

- Available body material SA216-WCB
- Investment cast for smooth flow
- Integrated body and bonnet
- T and Y patterns

SA351-CF8M

• Integrated body and bonnet

Anchor/Darling 1878 Series globe valves for nuclear service are normally furnished in Class 1878. Other interpolated pressure classes are also available on application. Parts shown are not applicable to all 1878 Series valves. Construction and materials for nuclear valves may vary depending upon customer design specifications. For a complete, accurate and itemized description of a particular valve, contact your local Flowserve valves sales representative.

Description	ASME/ASTM No.	ASME/ASTM No.		
Body	SA216-WCB	SA351-CF8M		
Stem	A564-630-1075	A564-630-1075		
Disc	A747-CB7-CU1-H1100	A747-CB7-CU1-H1100		
Seat	A276-S21800A	A276-S21800A		
End Rings	Braided Graphite	Braided Graphite		
Packing Rings	Grafoil	Grafoil		
Gland	A351-CF8M	A351-CF8M		
Gland Adjusting Screw	A564-630-1075	A564-630-1075		
Yoke Bushing	B21-C464-H02	B21-C464-H02		
Handle	A351-CF8M	A351-CF8M		
Stem Nut	A1S1 300	A1S1 300		

Series 1878 Stop Valves, Class 1878

Features

- Pressure Class 1878 (Intermediate)
- · One-piece investment cast body/yoke
- T-head stem for easy changeout of disc
- · Four disc styles:
 - Quick Opening
 - Equal Percent
 - Linear
 - Resilient
- · Bore-guided disc
- · Non-rotating stem

Dimensions - Globe

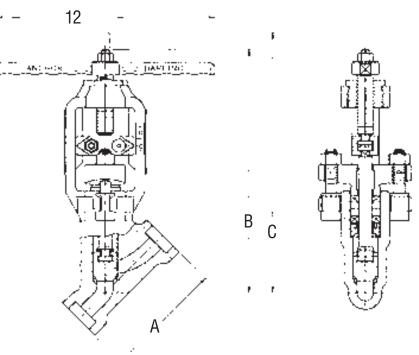
Pressure	Class	1878	(PN	325))
----------	--------------	-------------	-----	------	---

Fig. No.	Туре	Ends	NPS (DN)
NGB24S	Globe	Socket Weld	½ (15) thru 2 (50)
NGB24U	Globe	Butt Weld	½ (15) thru 2 (50)

Black numerals are in inches and pounds

• Ease of maintenance

A


- · Graphite packing standard
- · Removable threaded backseat or loose backseat
- · Non-cobalt seating standard
- Integral position indicator

Dimensions – Clobe Colored numerals are in millimeters and kilograms							
Figure No. NGB24S/NGB24U	NPS	1/2	3⁄4	1	1½	2*	2
Figure No. NGD243/NGD240	DN	15	20	25	40	50	50
٨		5.5	5.5	5.5	7.0	8.5	8.5
A		140	140	140	178	216	216
В		10.8	10.8	10.8	13.7	13.7	16.6
D		274	274	274	348	348	422
C		11.5	11.5	11.5	14.7	14.7	17.8
		292	292	292	373	373	452
Weight Approx (lbs.)		16	16	16	33	35	55
		7.3	7.3	7.3	15.0	15.9	25
Cv**		7	8	8	24	24	38

* Reduced ports ** Quick open – Flow under disc Refer to page 94 for materials of construction.

Series 1878 Stop Valves, Class 1878

Features

- Pressure Class 1878 (Intermediate)
- One-piece investment cast body/yoke
- Four disc styles:
 - Quick Opening
 - Equal Percent
 - Linear
 - Resilient
- T-head stem for easy changeout of disc
- Bore-guided disc
- Integral position indicator

Dimensions – Globe

Pressure Class 1500 (PN 260)

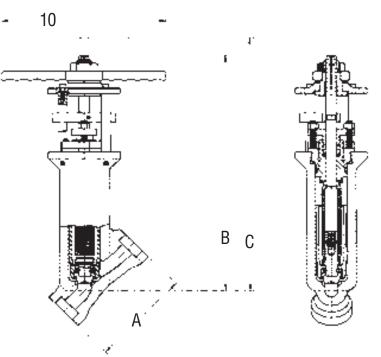
Fig. No.	Туре	Ends	NPS (DN)
NYG34S	Y Globe	Socket Weld	½ (15) thru 2 (50)
NYG34U	Y Globe	Butt Weld	½ (15) thru 2 (50)

- Non-rotating stem
- Ease of maintenance
- Graphite packing standard
- · Removable threaded backseat or loose backseat
- · Non-cobalt seating standard

Black numerals are in inches and pounds
Colored numerals are in millimeters and kilograms

Figure No. NYC245/NYC2411	NPS	1/2	3⁄4	1	1½	2*	2
Figure No. NYG34S/NYG34U	DN	15	20	25	40	50	50
A		5.5	5.5	5.5	7.0	8.5	8.5
		140	140	140	178	216	216
P		11.3	11.3	11.3	14.3	14.3	17.3
D	[274	274	224	348	348	422
0		11.9	11.9	11.9	15.3	15.3	18.5
6	[292	292	292	373	373	452
		16	16	16	33	35	55
Weight Approx (lbs.)		7.3	7.3	7.3	15	15.9	25
Cv**		14	16	16	48	48	76

* Reduced ports ** Quick open – Flow under disc


Series 1878 Stop Valves – Y Pattern Bellows Seal, Class 1878

Also available in series 800.

Rapid Change Kit

The Rapid Change Kit includes trim parts, the ADVanseal® Pressure Seal Gasket, bellows and disc assembly, and is offered as a means for keeping the time to repair or refurbish trim components to a minimum and thereby help to minimize exposure time of maintenance personnel.

Rapid Change Kit

Features

- Pressure Class 1878 (Intermediate)
- · Investment cast body
- ADVanseal® body-bonnet sealing
- · Secondary stem seal:
 - Backseat
 - Stem packing
- · Long bellows life
 - Per MSS-SP-117
- · Non-rotating stem

Dimensions – Globe

Pressure Class 1500 (PN 260)

Fig. No.	Туре	Ends	NPS (DN)
NBG34S	Globe	Socket Weld	½ (15) thru 1 (25)
NBG34U	Globe	Butt Weld	½ (15) thru 1 (25)

- · Quick-opening disc
- · Ease of maintenance
 - No welding design
 - Rapid Change Kit
- · Non-cobalt seating standard

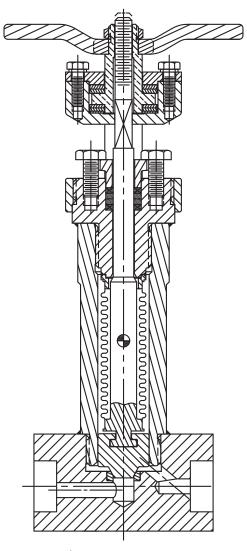

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. NPC246/NPC24U	NPS	1/2	3⁄4	1
Figure No. NBG34S/NBG34U	DN	15	20	25
Δ.		5.5	5.5	5.5
A		140	140	140
D		13.8	13.8	13.8
В		351	351	351
<u> </u>		14.1	14.1	14.1
0		358	358	358
Weight Approx (lbs.)		21	21	21
Weight Approx (lbs.)		9.5	9.5	9.5
Cv		8	9	9

Other sizes available upon request.

Series 1878 Instrument Valves – T Pattern, Class 1878

FLOW

Features

- · Seat is cold-formed into body recess
- Bellows is two-ply Inconel 625 for increased strength and cycle life (per MSS-SP-117)
- Secondary packing seal provides backup sealing in case of bellows leakage
- Bonnet is threaded and seal welded to body to eliminate leak path
- Yoke adapter is equipped with bearings for easy operation at high pressure

Refer to page 94 for materials of construction.

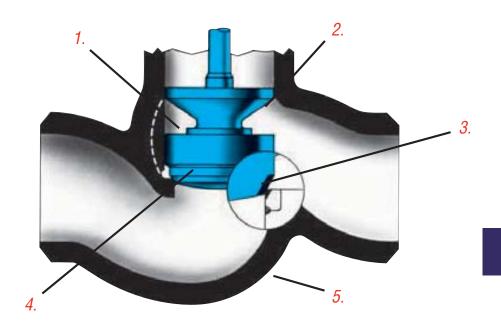
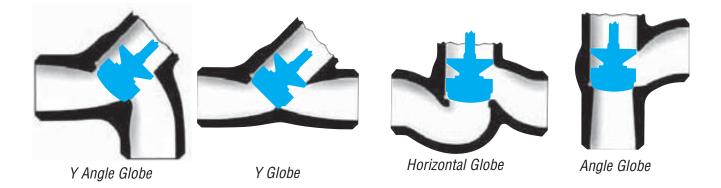

Pressure Class 1500 (PN 260)

Fig. No.	Туре	Ends	NPS (DN)
NGI29S	Instrument Globe	Socket Weld	½ (15) thru 1 (25)
NGI29U	Instrument Globe	Butt Weld	½ (15) thru 1 (25)


- Available sizes 1/2", 3/4" and 1"
- Weight 5 1/2 pounds
- C_v 1

Features and Description of Flowserve Anchor/Darling Globe Valves

Various body types are offered to provide the piping designer greater flexibility. The Y globe and horizontal globe are normally used in horizontal pipelines. The angle globe is normally used in lieu of an elbow where flow control is necessary and when flow is upward in the vertical piping leg. The Y angle globe is normally used in lieu of an elbow where flow control is necessary and when flow is toward the valve in the horizontal piping leg.

- 1. Full body guides ensure correct seat alignment.
- 2. Plug skirt prevents plug cocking even under turbulent flow conditions.
- **3. Differential mating angles** between plug and seat ring ensure tight seal with low seating force.
- 4. Swivel plug ensures proper seat alignment and tight seal.
- **5. Cast bodies** permit the internal flow passage to be designed with large radius curves. This provides smooth transitions and reduces damaging turbulence, which is unavoidable in bodies of forged and fabricated designs.

Four Body Types

Standard Plug

Parabolic Plug

Custom-Designed Plugs

Custom-designed plugs can be furnished to provide various flow characteristics through globe valves. The plug profile is designed for the desired flow characteristics of the specific service conditions.

Flowserve Flow Control manufactures four types of Anchor/Darling globe valve configurations, enabling customers to select the best globe valve for their specific throttling requirements. Each configuration is designed to minimize destructive turbulence.

State-of-the-art technology, backed up by almost a century of engineering, goes into each valve. Bodies are designed with large radius curves to ensure smooth transitions and eliminate abrupt changes in fluid direction. Damaging turbulence is reduced by custom-designed plugs that provide the desired flow characteristics. All four configurations are available in 21/2" to 36" diameters, in pressure ratings from 150 to 4,500 pounds. Base material can be

carbon steel, stainless steel or one of many special alloys.

We can supply various combinations of seating and stem materials for specific customer requirements. Valves rated at less than pressure class 600 are equipped with bolted-bonnet type closures; those with ratings of pressure class 600 or higher can be supplied with either bolted or pressure seal-type bonnets.

4" 600# Globe Valve

18" 300# Angle Globe

24" 900# Y-Globe

Power-Actuated Globe Valves

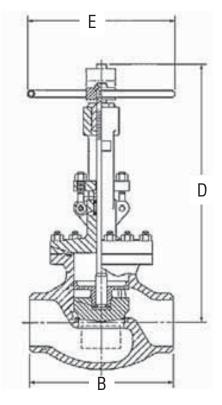
Flowserve globe valves are easily adapted to power actuation. Electric motor, pneumatic and hydraulic units are commonly supplied, but custom designed systems can be furnished for your specific application. A complete complement of accessories is available to ensure that the equipment meets operating requirements. Double packing, limit switches, position indicators, air wrench adaptors, drains and bypasses are typical examples of accessories that can be supplied.

100

Parts Specification List for Anchor/Darling Globe Valves

This is not a complete list. Construction and materials will vary between sizes and pressure classes and may be changed without notice. For a complete, accurate and itemized description of a particular valve, contact your Flowserve valves sales representative.

Description [®]	ASME/ARTM	ASME/ARTM
Body/Bonnet*	SA-216	SA-351
bouy/ boining t	Grade WCB	Grade CF8M
Disc	SA-105	A-182
		Grade F304
Disc Skirt	A-105	A-182
		Grade F304
Stem	A-582	A-564
	Grade 416T	Grade 630-1075
Yoke Bushing	B-21	B-21
	C464-H02	C464-H02
Pressure Seal Gasket		sure Seal Gasket.
Bonnet Retainer Studs	A-193	A-193
	Grade B7	Grade B7
Bonnet Retainer Nuts	A-194	A-194
	Grade 2H	Grade 2H
Gland	A-582	A-479
	Grade 416T	Grade 304
Eye Bolt	A-193	A-193
,	Grade B7	Grade B7
Eye Bolt Nuts	A-194	A-194
	Grade 2H	Grade 2H
Eye Bolt Pins	A-193	A-479
-	Grade 87	Grade 304
Stem Clamp Key	A-108 Grade 1018	A-108 Grade 1018
	A-216	A-216
Yoke	Grade WCB	Grade WCB
	A-517	A-517
Yoke Lock Ring	Grade 70	Grade 70
	A-193	A-193
Yoke Lock Ring Studs	Grade B7	Grade B7
	A-194	A-194
Yoke Lock Ring Nuts	Grade 2H	Grade 2H
	A-53	A-53
Handwheel	Class SB	Grade SB
Otere Deteinen	A-582	A-564
Stem Retainer	Grade 416T	Grade 630-1075


* Other material grades available on application.

Standard Features

- Carbon, stainless or special alloys
- Bolted bonnet
- · Four body configurations
 - Tee
 - Angle
- Y Globe
- Y Angle
- · Available Stellite seat, disc and backseat
- Body-guided disc
- Various combinations of seat and stem materials
- Swivel-style disc
- Differential mating angles between seat and disc

Dimensions – Globe

Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)
BGB21U	Globe	Butt Weld	2½ (65) thru 24 (600)
BAG41U	Angle Globe	Butt Weld	2½ (65) thru 24 (600)
BYG31U	Y Globe	Butt Weld	2½ (65) thru 24 (600)
BYA80U	Y Angle	Butt Weld	2½ (65) thru 24 (600)
BGB21C	Globe	Flanged	2½ (65) thru 24 (600)
BAG41C	Angle Globe	Flanged	2½ (65) thru 24 (600)
BYG31C	Y Globe	Flanged	2½ (65) thru 24 (600)
BYA80C	Y Angle	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. BGB21U, BGB31C	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Others Available upon request	DN	65	80	100	150	200	250	300	350	400	450	500	600
В		8.5	9.5	11.5	16.0	19.5	24.5	31.0	38	36.0	50.0	50.0	56.0
D		216	241	292	406	495	622	787	965	914	1,270	1,270	1,422
D		17.0	21.0	22.0	38.0	43.0	45.0	50.0	54.0	61.0	69.0	79.0	94
D		432	533	559	965	1,092	1,143	1,270	1,372	1,549	1,753	2,007	2,388
Е		10.0	10.0	16	12.0	18.0	18.0	24.0	24.0	30.0	30.0	30.0	36.0
E		254	254	407	305	457	457	610	610	762	762	762	914
Waight Approx (lbs		80	90	150	300	530	625	915	1300	1955	2625	3650	5100
Weight Approx (lbs.	,	36.3	50.3	68	136.1	240.4	283.5	415	589.7	886.8	1,191	1,655.6	2,313.4
Cv		73.4	100	173	390	674	1060	1638	2139	2497	3790	4396	6150

Refer to page 101 for materials of construction.

<u>102</u>

D

F

Stop Valves, Class 300

Standard Features

- Carbon, stainless or special alloys
- Bolted bonnet
- Four body configurations
 - Tee
 - Angle
 - Y Globe
 - Y Angle
- Available Stellite seat, disc and backseat
- Body-guided disc
- · Various combinations of seat and stem materials
- · Swivel-style disc
- Differential mating angles between seat and disc

Dimensions – Globe

Fig. No.	Туре	Ends	NPS (DN)
CGB21U	Globe	Butt Weld	2½ (65) thru 24 (600)
CGB21C	Globe	Flanged	2½ (65) thru 24 (600)
CAG41U	Angle Globe	Butt Weld	2½ (65) thru 24 (600)
CAG41C	Angle Globe	Flanged	2½ (65) thru 24 (600)
CYG31U	Y Globe	Butt Weld	2½ (65) thru 24 (600)
CYG31C	Y Globe	Flanged	2½ (65) thru 24 (600)
CYA80U	Y Angle	Butt Weld	2½ (65) thru 24 (600)
CYA80C	Y Angle	Flanged	2½ (65) thru 24 (600)

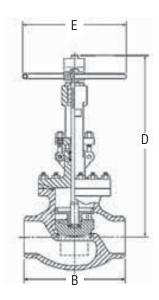

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. CGB21U/CGB21C Others Available upon request		21⁄2	3	4	6	8	10	12	14	16	18	20	24
		65	80	100	150	200	250	300	350	400	450	500	600
В		11.5	12.5	14	17.5	22	24.5	31	38	47	50	54	—
D		292	318	356	495	559	622	787	965	1,194	1,270	1,372	—
		17	21	24	42	44	49	51	59	61	75	85	98
		432	533	610	1,067	1,118	1,245	1,295	1,499	1,549	1,905	2,159	2,489
E		10	10	16	12	12	18	18	24	24	30	30	36
E		254	254	406	305	305	457	457	610	610	762	762	914
Waight Approx (lbs)		70	115	235	505	580	900	1,405	1,925	2,475	3,270	3,920	5,400
Weight Approx (Ibs.)		31.8	52.2	106.6	229.1	263.1	408.2	637.3	873.2	1,122.7	.7 1,483.3 1,778		2,449.4
Cv		89.6	119	196	472	730	1,060	1,931	2,139	2,975	3,300	4,548	6,159

Refer to page 101 for materials of construction.

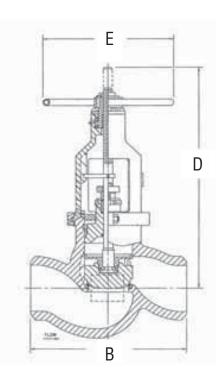
<u>103</u>

Standard Features

- Carbon, stainless or special alloys
- Bolted or pressure seal bonnet
- Four body configurations
 - Tee
- Angle
- Y Globe
- Y Angle
- · Available Stellite seat, disc and backseat
- Body-guided disc
- · Various combinations of seat and stem materials
- Swivel-style disc
- · Differential mating angles between seat and disc

Pressure Class 600 (PN 110)

Fig. No.	Туре	Ends	NPS (DN)
EGB21U	Globe-Bolted Bonnet	Butt Weld	2½ (65) thru 24 (600)
EGB21C	Globe-Bolted Bonnet	Flanged	2½ (65) thru 24 (600)
EGB24U	Globe-Pressure Seal	Butt Weld	2½ (65) thru 24 (600)
EGB24C	Globe-Pressure Seal	Flanged	2½ (65) thru 24 (600)
EAG41U	Angle Globe-Bolted Bonnet	Butt Weld	2½ (65) thru 24 (600)
EAG41C	Angle Globe-Bolted Bonnet	Flanged	2½ (65) thru 24 (600)
EAG44U	Angle Globe-Pressure Seal	Butt Weld	2½ (65) thru 24 (600)
EAG44C	Angle Globe-Pressure Seal	Flanged	2½ (65) thru 24 (600)
EYG31U	Y Globe-Bolted Bonnet	Butt Weld	2½ (65) thru 24 (600)
EYG31C	Y Globe-Bolted Bonnet	Flanged	2½ (65) thru 24 (600)
EYG34U	Y Globe-Pressure Seal	Butt Weld	2½ (65) thru 24 (600)
EYG34C	Y Globe-Pressure Seal	Flanged	2½ (65) thru 24 (600)
EYA80U	Y Angle Bolted Bonnet	Butt Weld	2½ (65) thru 24 (600)
EYA80C	Y Angle Bolted Bonnet	Flanged	2½ (65) thru 24 (600)
EYA81U	Y Angle Presure Seal	Butt Weld	2½ (65) thru 24 (600)
EYA81C	Y Angle Presure Seal	Flanged	2½ (65) thru 24 (600)


Dimensions – Globe

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. EGB21U/EGB21C, EGB24U/EGB24C others available upon request		21⁄2	3	4	6	8	10	12	14	16	18	20	24
		65	80	100	150	200	250	300	350	400	450	500	600
В		8.5	14	17	22	26	31	33	35	39	43	50	58
		216	356	432	559	660	787	838	889	991	1,092	1,270	1,473
D		23	24	26	43	47	51	60	66	72	81	87	96
		584	610	660	1,092	1,194	1,295	1,524	1,676	1,829	2,057	2,210	2,438
		12	14	14	18	18	18	24	24	24	30	30	36
C		305	356	356	457	457	457	610	610	610	762	762	914
Weight Approx (lbs.)		65	94	180	425	670	1,090	1,520	2,610	3,620	4,675	5,725	7,200
		29.5	42.6	81.6	192.8	303.9	434.4	689.5	1,184	1,642	2,120	2,597	3,266
Cv		70.9	129	221	479	798	1,195	1,669	1,960	2,529	3,267	4,125	5,853

Refer to page 101 for materials of construction.

<u>104</u>

Black numerals are in inches and pounds

Colored numerals are in millimeters and kilograms

Standard Features

- Carbon, stainless or special alloys
- Pressure seal bonnet
- Four body configurations
 - Tee
 - Angle
 - Y Globe
 - Y Angle
- Available Stellite seat, disc and backseat
- Body-guided disc
- · Various combinations of seat and stem materials
- Swivel-style disc
- Differential mating angles between seat and disc

Dimensions – Globe

Pressure	Class	<i>600</i>	(PN 150)
----------	-------	------------	---------	---

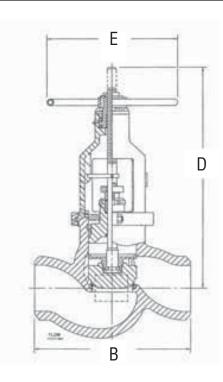

Fig. No.	Туре	Ends	NPS (DN)
FGB24U	Globe	Butt Weld	2½ (65) thru 24 (600)
FAG44U	Angle Globe	Butt Weld	2½ (65) thru 24 (600)
FYG34U	Y Globe	Butt Weld	2½ (65) thru 24 (600)
FYA81U	Y Angle	Butt Weld	2½ (65) thru 24 (600)

Figure No. FGB24U	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Others available upon request	DN	65	80	100	150	200	250	300	350	400	450	500	600
		13	12	18	20	26	31	36	40.5	43	48	52	58
В		330	305	457	508	660	787	914	1,029	1,092	1,219	1,321	1,473
		24	28	33	45	49	56	62	68	77	83	92	98
D		610	711	838	1,143	1,245	1,422	1,575	1,727	1,957	2,108	2,337	2,489
		14 IMP	16 IMP	16 IMP	18	18	24	24	24	30	30	36	38
E		356	381	381	457	457	610	610	610	762	762	914	914
Weight Approx (lbs.)		150	180	310	560	915	1,350	1,770	3,160	4,070	5,455	6,840	7,800
		68	81.6	140.6	254	415	612.4	802.9	1,433	1,846	2,474	3,102	3,538
Cv		83.3	107	217	421	745	1,133	1,644	2,021	2,515	3,298	4,002	5,492

Refer to page 101 for materials of construction.

105

Standard Features

- Carbon, stainless or special alloys
- · Pressure seal bonnet
- · Four body configurations
 - Tee
 - Angle
 - Y Globe
 - Y Angle
- Available Stellite seat, disc and backseat
- Body-guided disc
- · Various combinations of seat and stem materials
- Swivel style disc
- Differential mating angles between seat and disc

Dimensions – Globe

Pressure Class 1500 (PN 260)

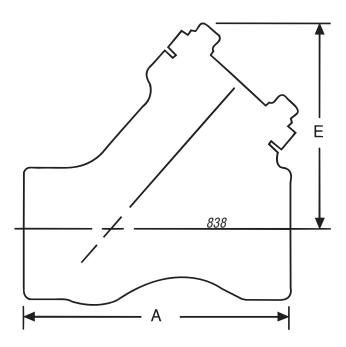
Fig. No.	Туре	Ends	NPS (DN)
GGB24U	Globe	Butt Weld	2½ (65) thru 24 (600)
GAG44U	Angle Globe	Butt Weld	2½ (65) thru 24 (600)
GYG34U	Y Globe	Butt Weld	2½ (65) thru 24 (600)
GYA81U	Y Angle	Butt Weld	2½ (65) thru 24 (600)

Black numerals are in inches and pounds

Colored numerals are in millimeters and kilograms

Figure No. GGB24U, GAG44U, GYG34U, GYA81U		21⁄2	3	4	6	8	10	12	14	16	18	20	24
Others available upon request	DN	65	80	100	150	200	250	300	350	400	450	500	600
В		13	15	18	24	29	34	38	40	45	51	58	68
		330	381	457	610	737	864	965	1,016	1,143	1,295	1,473	1,727
D		24	25	28	49	53	60	68	72	81	87	98	100
D		610	635	711	1,245	1,346	1,524	1,651	1,829	2,057	2,210	2,438	2,540
		14 IMP	14 IMP	16 IMP	18	18	24	24	24	30	30	36	36
E		356	356	406	457	457	610	610	610	762	762	1,296	1,296
Weight Approx (Ibs.)		150	280	355	735	1,370	2,480	2,590	3,700	4,810	5,920	7,030	8,140
		68.0	127.0	161.0	333.4	621.4	1,125	1,175	1,678	2,182	2,685	3,189	3,692
Cv		83.3	119	201	435	733	1,102	1,552	1,813	2,345	3,097	3,929	5,567


Refer to page 101 for materials of construction.


<u>106</u>

Edward Check Valves

Piston Check Valves, Class 600

Standard Features

- Bodies and covers are of forged steel (A105)
- · Bolted cover
- Y Pattern
- Body-guided hardened stainless steel disc
- Integral Stellite seat
- Asbestos-free spiral-wound cover gasket
- Stainless steel spring (optional without springs)

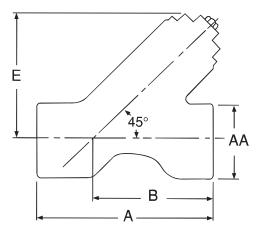
Dimensions – Globe

Pressure Class 600 (PN 110)

FIG. NO.	ТҮРЕ	ENDS	NPS (DN)
838	Y Pattern	Threaded	1⁄4 (8) thru 2 (50)
838Y	Y Pattern	Socket Weld	¼ (8) thru 2 (50)

Black numerals are in inches and pounds

Colored numerals are in millimeters and kilograms


	NPS	1⁄4	3/8	1⁄2	3⁄4	1	1¼	1½	2
Figure No. 838/838Y	DN	8	10	15	20	25	32	40	50
A - End to End		3	3	3	3.6	4.3	5.8	5.8	6.5
		76	76	76	91	109	147	147	165
E - Center to Top		2.8	2.8	2.8	3.3	3.8	4.6	4.6	5.1
		71	71	71	84	97	117	117	130
Weight		2	2	2	3.5	5	11	10	14
Weight		0.9	0.9	0.9	1.6	2.3	5	4.5	6.3

Refer to page 59 for materials of construction.

Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

Univalve® Piston Check Valves, Class 1500

36174

NPS (DN)

1/2 (15) thru 2-1/2 (65)

1/2 (15) thru 4 (100)

Ends

Socket Weld

Butt Weld

Pressure Class 1500 (PN 260)

Туре

Y Pattern

Y Pattern

Fig. No.

Unweld.

36274

36278

Welded

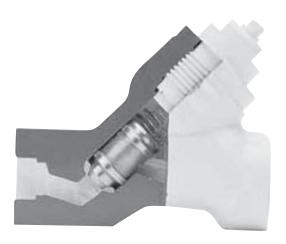
36174

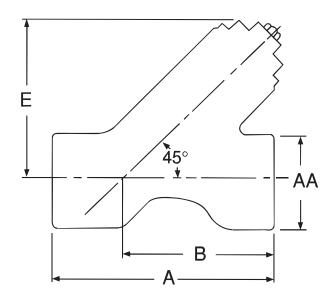
36178

Standard Features

- · Available body materials
 - SA105 carbon steel
 - F22 alloy steel
 - F316 stainless steel
 - Other material on application
- · Unwelded (graphitic seal) or welded cover
- Y Pattern
- Body-guided investment cast Stellite disc
- Integral Stellite seat
- Stainless steel spring (optional without springs)

Dimensions


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


Eiguro No. 26174, 26170, 26074, 26070	NPS	1⁄2	3⁄4	1	1-1⁄4	1-1⁄2	2	2-1/2	3	4
Figure No. 36174, 36178, 36274, 36278	DN	15	20	25	32	40	50	65	80	100
A - End to End	·	6.0	6.0	6.0	6.7	6.7	8.2	10.7	10.7	12.8
A - Ellu to Ellu		152	152	152	170	170	208	272	272	325
AA - End Hub Diameter		2.30	2.30	2.30	3.20	3.20	3.64	4.00	4.00	4.80
AA - Eliu hub Dialiletei		58	58	58	81	81	92	102	102	122
P. Contor to End		4.0	4.0	4.0	4.8	4.8	6.1	7.1	7.1	8.8
B - Center to End		102	102	102	122	122	155	180	180	224
Contar to Tan		3.9	3.9	3.9	5.0	5.0	5.8	7.2	7.2	7.8
E - Center to Top		99	99	99	127	127	147	183	183	198
Weight		14	14	14	22	22	31	44	44	86
Weight		6	6	6	10	10	14	20	20	39

Refer to page 63 for materials of construction.

Univalve[®] Piston Check Valves, Class 2500

66174

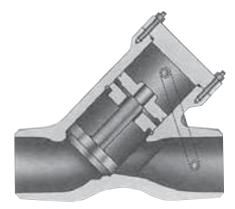
Pressure Class 2500 (PN 420)

Fig.	No.	Tuno	Ends	NPS (DN)				
Welded	Unweld.	Туре	Ellus					
66174	66274	Y Pattern	Socket Weld	½ (15) thru 2½ (65)				
66178	66278	Y Pattern	Butt Weld	½ (15) thru 4 (100)				

- · Integral Stellite seat
- Stainless steel spring (optional without springs)

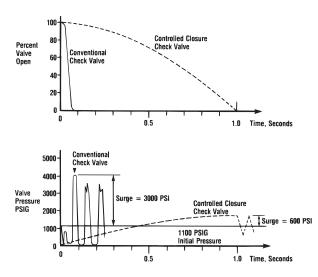
Standard Features

- Available body material
 - SA105 carbon steel
 - F22 alloy steel
- F316 stainless steel
- Other material on application
- · Unwelded (graphitic seal) or welded cover
- Y Pattern
- Body-guided investment cast Stellite disc


Dimensions – Globe

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. 66174, 66178, 66274, 66278	NPS	1/2	3⁄4	1	1¼	1½	2	21⁄2	3	4
Figure No. 00174, 00176, 00274, 00278	DN	15	20	25	32	40	50	65	80	100
A - End to End		6.0	6.0	6.0	6.7	6.7	10.7	12.8	12.8	12.8
A - Ella lo Ella		152	152	152	170	170	272	325	325	325
AA - End Hub Diameter		2.30	2.30	2.30	3.20	3.20	4.00	4.80	4.80	4.80
AA - End Hub Diameter		58	58	58	81	81	102	122	122	122
B - Center to End		4.0	4.0	4.0	4.8	4.8	7.1	8.8	8.8	8.8
B - Center to End		102	102	102	122	122	180	224	224	224
E Contar to Top (Open)		3.9	3.9	3.9	5.0	5.0	7.0	7.8	7.8	7.8
E - Center to Top (Open)		99	99	99	127	127	178	198	198	198
Weight		14	14	14	22	22	52	86	86	86
Weight		6	6	6	10	10	24	39	39	39


Refer to page 63 for materials of construction.

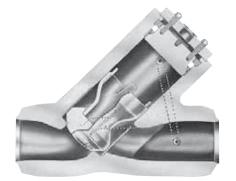
Controlled Closure Check Valve

Standard Features

- Minimizes waterhammer effects on postulated feedwater line break
- Computerized modeling verified by dynamic testing

The Flowserve Edward Controlled Closure Check Valve was developed and qualified to serve a function that no other previous check valve could handle. If a feedwater line should rupture in a nuclear power plant, the reversed flow from the reactor or steam generator out of the containment boundary must be contained. Conventional check valves would close rapidly, but not fast enough to prevent high reverse flow velocity; closure of the conventional valve would produce severe pressure surges due to waterhammer—possibly severe enough to produce rupture of other piping or equipment.

The Controlled Closure Check Valve is much like a Flite-Flow piston lift check valve, but it has an integral "dashpot"—a plate with a close-clearance fit around the rod connecting the disc and piston. Flow paths sized for individual applications limit the flow out of the dashpot and consequently control the valve closing speed. See pg. 227-229 for a discussion of waterhammer and a comparison of the controlled closure check valve with other types.


As the final design section is very dependent on the specific application, consult with your Flowserve sales representative for more design details for this valve configuration.

Features and Description of Flowserve Edward Check Valves

Over 75 years of valve field experience, coupled with ongoing research and development programs, have led to Flowserve Edward valves' reputation as a leader in supplying horizontal, angle, Flite-Flow and Elbow Down piston lift check valves.

These check valves incorporate time-proven design features such as equalizers for full lift at lower flows; body-guided disc-piston assemblies for seat alignment and stable operation; integral Stellite seating surfaces for long life and tight sealing; and streamlined flow shapes for low-pressure drop. Flowserve Edward valves maintain a reputation for the "Preferred" valve in critical high-pressure, high-temperature applications.

Flite-Flow[®]

Angle

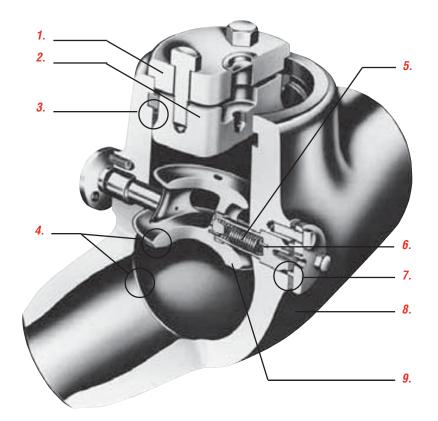
Globe

Flowserve - Edward Skirted Check Valves

For check or stop-check applications with a broad range of flow conditions, a "skirted" disc, identified by adding the suffix "K" to the valve figure number, may provide the required minimum lift at low flow while providing acceptable pressure drop at maximum flow. Specifically, the illustrated disc with a Mini-Skirt provides good low-flow performance while reducing C_v by only 10%. See the Flowserve Edward Valves technical article EVAWP3019 for assistance on high-turndown applications.

Features and Description of Flowserve Edward One-Piece Tilting-Disc Check Valves

The Edward tilting-disc check valve is designed to close as quickly as possible. It minimizes loud, damaging slamming and vibration noises caused when high-velocity reverse flow is allowed to build up before the completion of closing.


Quick Closing

Quick closing is achieved through a combination of several design construction features. The disc is dome-shaped to avoid hesitation of disc motion or closing, common to conventional flat discs. For minimum pendulum period—an important factor in assuring quick closing—the disc pivot is located close to the center of gravity of the disc.

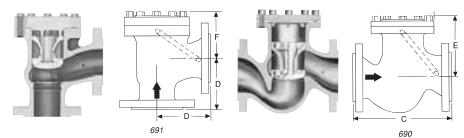
All disc surfaces are open to line fluid so that no dashpot action can delay closing. The disc pivots on pin supports having chromeplated bearings for minimum friction. Totally enclosed torsion springs in the pivot pins help speed the closing action, although the disc is counterweighted sufficiently to close automatically without aid from the springs whether the valve is in a vertical or horizontal position. Since the springs are fully enclosed in the pins, they are not subject to possible erosive effects of line fluids and foreign matter cannot get in. There is no bolting in the flow stream.

Adjustable Hinge Pins

Available factory installed or as a conversion kit, Edward valves' unique, adjustable hinge pin replaces the usual concentric hinge pins with double offset eccentric hinge pins, making core alignment a matter of simply dialing in the fit.

- **1. Cover retainer** provides loading through the cover retainer and bolting to initiate a seal at the pressure seal gasket.
- 2. Cover is precision machined to retain pressure integrity and critical gasket seating surfaces.
- Composite pressure seal gasket is a preloaded pressure energized flexible graphite composite for long, reliable service.
- Integral hardsurfaced seats, both body and disc, provide positive shutoff and long seat life.
- Springs ensure quick closing of the disc by providing a positive seating force to speed closing.

- **6. Hinge pin** provides a disc pivot point close to its center of gravity for fast response to flow reversals, which minimizes water-hammer effects.
- 7. Hinge pin gasket is spiral wound, coated steel, or flexible graphite for long, reliable service.
- 8. Body features a straight-thru compact design for low-pressure drop.
- Disc assembly is dome-shaped and counterweighted for fast response to flow reversals.



Parts Specification List for Flowserve Edward One-Piece Tilting-Disc Check Valve

This is not a complete list. Construction and materials will vary between sizes and pressure classes and may be changed without notice. For a complete, accurate and itemized description of a particular valve, contact your Flowserve Edward valves sales representative.

Description [®]	ASME/ASTM No.	ASME/ASTM No.	ASME/ASTM No.	ASME/ASTM No.
Body/Cover*	SA-216	SA-216	SA-217	SA-351
bouy/cover	Grade WCB	Grade WCC	Grade WC9	Grade CF8M
Disc††	SA-105	SA-105	SA-182	SA-182
	_		Grade F22	Grade F316
Pressure Seal Gasket*		Composite Pres	sure Seal Gasket	
0	A-668 Grade 4140	A-668 Grade 4140	A-668 Grade 4140	Grade 182
Spacer Ring	MnPO ₄ Plated	MnPO ₄ Plated	MnPO ₄ Plated	Grade F6 CL4
Cooket Detainer	SA-182	A-182	A-565	A-638
Gasket Retainer	Grade F6 CL4	Grade F6 CL4	Grade 616 HT	Grade 660 T2
Cover Retainer	A-216	A-216	A-216	A-216
Cover Relainer	Grade WCB	Grade WCB	Grade WCB	Grade WCB
Cover Retainer Capscrews	A-193	A-193	A-193	A-193
or Studs	Grade B7	Grade B7	Grade B7	Grade B7
Cover Retainer Nuts	A-194	A-194	A-194	A-194
Cover Relainer Nuls	Grade 2H	Grade 2H	Grade 2H	Grade 2H
Hinge Pin Gasket Size 2½,	Spiral Wound Gasket (Asb.			
3, 4	Free)	Free)	Free)	Free)
Hinge Pin Gasket Size 6 & Larger		Graphite	e Gasket	
Hingo Din	A-182	A-182	A-565	A-638
Hinge Pin	Grade F6aCL4	Grade F6aCL4	Grade 616 HT	Grade 660 Type 2
Uingo Din Bolto	A-193	A-193	A-193	A-453
Hinge Pin Bolts	Grade B7	Grade B7	Grade B16	Grade 660B
Hingo Din Potoinor	A-105	A-105	A-182	A-182
Hinge Pin Retainer		—	Grade F22	Grade F316
Hinge Pin Springs†	A-313	A-313	A-313	A-313

*Other material grades available on application. **All ANSI Class 600 valves utilize an asbestos-free spiral wound bonnet gasket. †Hinge Pin Torsion Springs required in size 6 and larger valves only. ††Sizes 2½, 3 and 4, Pressure Classes 900, 1500 and 2500 – disc material is A732-GR21

Standard Features

- Bodies and covers are cast steel (WCB, WCC, WC9, CFBM)
- · Bolted or pressure-seal cover
- Y Pattern, globe, angle, or tilting disc
- Integral Stellite seats
- Body-guided disc piston, globe, angle and Flite-Flow
- Long Terne[#] steel or pressure-seal gasket
- Equipped with equalizer, globe, angle and Flite-Flow

Pressure Class 600 (PN 110)*

Fig.	No.	Tune	Fada	Downot	
STD CL	SPL CL	Туре	Ends	Bonnet	NPS (DN)
670Y	770Y	Tilting Disc	Butt Weld	Bolted	6 (150) thru 20 (500)
690	—	Globe	Flanged	Bolted	
690Y	—	Globe	Butt Weld	Bolted	2½ (65) thru 6 (150)
691	—	Angle	Flanged	Bolted	2 /2 (03) till 0 (150)
691Y	—	Angle	Butt Weld	Bolted	
***692	—	Flite-Flow	Flanged	*Pressure Seal	3 (80) thru 32 (800)
692Y	792Y	Flite-Flow	Butt Weld	*Pressure Seal	3 (00) thu 32 (000)
694	—	Globe	Flanged	Pressure Seal	
694Y	794Y	Globe	Butt Weld	Pressure Seal	9(200) thru 14(250)
695	—	Angle	Flanged	Pressure Seal	8 (200) thru 14 (350)
695Y	795Y	Angle	Butt Weld	Pressure Seal	

* Size 3 and 4 - Bolted bonnet with asbestos-free spiral-wound gasket.

* Size 3 and 4 Butt weld Flite-Flow valves are Class 700.

Dimensions – Globe & Angle

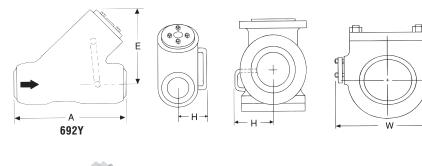
Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

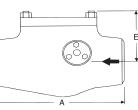
	5									Ŭ
Figure No. 690/690Y, 691/691Y,	NPS	21⁄2	3	4	5	6	8	10	12	14
694/694Y, 695/695Y, 794Y, 795Y	DN	65	80	100	125	150	200	250	300	350
C - Face to Face, Globe (Flanged)•		13	14	17	20	22	26	31	33	35
C - Face to Face, Globe (Flanged)		330	356	432	508	559	660	787	838	889
D - Center to Face, Angle (Flanged)•		6.5	7	8.5	10	11	13	15.5	16.5	17.5
D - Genter to Face, Angle (Flanged)-		165	178	216	254	279	330	394	419	445
E - Center to Top, Globe		6.6	7.1	8.9	11.4	13.1	17.3	20.2	23.2	25.1
L - Center to Top, Globe		168	180	226	290	333	439	513	589	638
F - Center to Top, Angle		4.8	5.0	6.4	8.0	8.9	11.9	13.4	15.5	16.6
T - Genter to Top, Aligle		122	127	163	203	226	302	340	394	422
H - Clearance for Equalizer		8.7	8.5	10	9.6	11	11.8	13	13.7	15.7
II - Clearance for Equalizer		221	216	254	244	279	300	330	348	399
Weight, Globe (Flanged)		80	110	210	360	460	815	1290	1870	2320
weight, dibbe (Hallged)		36	50	95	163	209	370	585	848	1052
Weight, Globe (Welding)		60	80	140	250	325	620	1040	1550	1930
weight, dibbe (weidhig)		27	36	64	113	147	281	472	703	875
Weight, Angle (Flanged)		72	95	184	290	380	590	990	1490	1830
weight, Angle (Hallyeu)		33	43	84	132	172	268	449	676	830
Weight, Angle (Welding)		50	70	124	180	250	400	710	1170	1440
weight, Allyle (weidilig)		23	32	56	82	113	181	322	531	653

• Center-to-end or end-to-end dimensions for welding end valves same as center-to-contact-face or contact-face-to-contact-face dimensions for flanged end valves.

Long Terne steel is a product coated by immersion in molten Terne metal. Terne metal is an alloy of lead and a small amount (about 3%) of tin.

*** Flanged valves available in sizes 3 through 16.


Refer to page 114 for materials of construction.


Standard Features

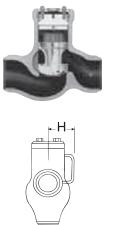
- · Bodies and covers are cast steel (WCB, WCC, WC9, CF8M)
- · Bolted or pressure-seal cover
- Y Pattern, globe, angle or tilting disc
- Integral Stellite seats
- Body-guided disc piston, globe, angle and Flite-Flow
- · Gasket: Sizes 3 and 4 asbestos-free, spiral wound; all others: composite pressure seal
- Equipped with equalizer, globe, angle and Flite-Flow

Dimensions – Flite-Flow

670Y

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No.692Y/792Y ***692	NPS	3	4	6	8	10	12	14	16	20	24	26	28	32
Figure No.0921/1921 092	DN	80	100	150	200	250	300	250	400	500	600	650	700	800
A - End to End (Welding)		13	15.5	20	26	31	38	38	41	60	66	70	81.5	90
A - Ella to Ella (Welding)		330	394	508	660	787	965	965	1041	1524	1676	1778	2070	2286
A - Eaco to Eaco (Elanged)		16.75	21.5	29	33	39	45	45	52	*	*	*	*	*
A ₂ - Face to Face (Flanged)		425	540	737	838	991	1143	1143	1321	*	*	*	-	-
E - Center to Top		7	11	15.75	17.75	21.25	25.25	25.25	31.5	36.0	*	*	*	*
		178	279	400	451	540	641	641	800	914				
H - Equalizer Clearance		7	9	10	12	13	14	14	22	24	*	*	*	*
H - Equalizer Glearance		178	229	254	305	330	356	356	559	610	*	*	*	*
Weight (Welding)		80	125	375	575	1000	1450	1450	3300	*	*	*	*	*
weight (weidnig)		35	55	170	261	454	658	658	1497					
Weight (Flanged)		120	200	520	750	1250	1900	2150	4300	*	*	-	-	-
Weight (Flanged)		54	90	236	340	567	862	975	1950					

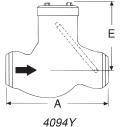

Notes: Size 3 and 4 Buttweld Class 600 Flite-Flow valves are Class 700.

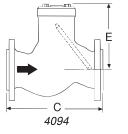
* E, H and other dimensions and information supplied upon request. *** Flanged valves available in sizes 3 through 16.

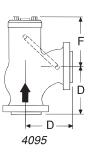
Dimensions – Tilting Disc

	NPS	6	8	10	12	14	16	18	20
Figure No. 670Y/770Y	DN	150	200	250	300	350	400	450	500
A End to End (Walding)		19.5	22	28.5	34.5	34.5	43.25	48.25	53.5
A - End to End (Welding)		495	559	724	876	876	1099	1226	1359
E Contor to Top		9.5	10.5	13.5	15.5	15.5	20.5	22.5	23.75
E - Center to Top		241	267	343	394	394	521	572	603
W - Width		15.25	17.5	21	25	25	32.25	34	38.5
		387	445	533	635	635	819	864	978
Weight (Wolding)		300	500	950	1450	1550	2550	3550	5650
Weight (Welding)		136	225	428	653	698	1148	1598	2543

Refer to page 114 for materials of construction.


Standard Features


Pressure-seal cover


Integral Stellite seats

· Bodies and covers are cast steel (WCB, WCC, WC9, CF8M)

· Globe, angle and tilting-disc design

F B B 4095Y

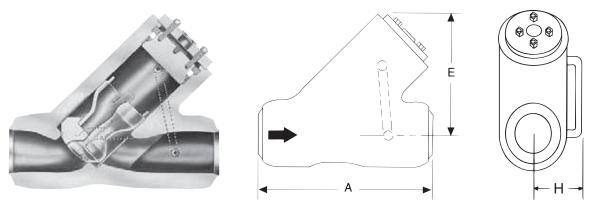
Black numerals are in inches and pounds

Pressure Class 900 (PN 150)*

Fig.	No.	Tuno	Ends	NPS (DN)			
STD CL	SPL CL	Туре	Ellus				
970Y	4370Y	Tilting- Disc	Butt Weld	2½ (65) thru 24 (600)			
4094	—	Globe	Flanged	3 (80) thru 14 (350)			
4094Y	4394Y	Globe	Butt Weld	3 (00) that 14 (330)			
4095	—	Angle	Flanged	3 (80) thru 24 (600)			
4095Y	4395Y	Angle	Butt Weld	3 (80) tillu 24 (800)			
4092	—	Flite-Flow	Flanged	3 (80) thru 16 (400)			
4092Y	4392Y	Flite-Flow	Butt Weld*	3 (80) tillu 18 (400)			

*Size 3 and 4 Buttweld Flite-Flow Valves are Class 1100

Dimensions – Globe & Angle


• Body-guided disc piston (Globe and Angle) • Equipped with equalizer (Globe and Angle)

Colored numerals are in millimeters and kilograms NPS Figure No. 4094/4094Y, 4095/4095Y, 4394Y, 4395Y DN 40.5 A - End to End (Welding) 7.5 16.5 20.25 14.5 B - Center to End (Welding) 40.5 C - Face to Face (Flanged) 7.5 14.5 16.5 20.25 D - Center to Face (Flanged) 13.75 28.75 15.63 18.5 22.25 26.25 E - Center to Top, Globe 16.75 21.5 9.25 10.25 11.25 12.5 21.5 F - Center to Top, Angle 7.5 7.63 9.75 10.75 12.5 12.88 14.75 17.38 H - Clearance for Equalizer Weight, Globe (Flanged) Weight, Globe (Welding) Weight, Angle (Flanged) Weight, Angle (Welding)

Refer to page 114 for materials of construction.

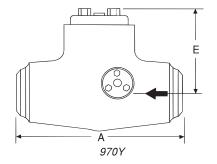
<u>117</u>

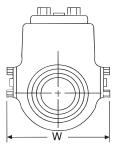
4092Y

Standard Features

- Bodies and covers are cast steel (WCB, WCC, WC9, CF8M)
- · Pressure-seal cover
- Y Pattern
- · Integral Stellite seats
- · Body-guided disc piston
- · Equipped with equalizer

Dimensions – Flite-Flow


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


Figure No. 4002/4002V 4202V	NPS	3	4	6	8	10	12	14	16
Figure No. 4092/4092Y, 4392Y	DN	80	100	150	200	250	300	350	400
A End to End (Molding)		17	18.5	20	26	31	38	38	44.5
A ₁ - End to End (Welding)		432	470	508	660	787	914	914	1092
A Face to Face (Flanged)		22.25	23.75	30	38	44	50	51	58
A ₂ - Face to Face (Flanged)		565	603	762	965	1118	1270	1295	1473
E. Contor to Top		10	11	13.5	17.25	20.25	24	24	30
E - Center to Top		254	279	343	438	514	610	610	762
H - Equalizer Clearance		9	9.3	10	12.5	16	15	15	25.75
n - Equalizer Glearance		229	236	254	318	406	381	381	654
Weight (Wolding)		130	175	300	710	1300	2050	2050	3900
Veight (Welding)		59	79	136	322	590	930	930	1769
Veight (Elanged)		190	250	520	1100	1850	2800	3200	5300
Weight (Flanged)		86	113	236	499	839	1270	1452	2404

Note: Size 3 and 4 Buttweld Class 900 Flite-Flow valves are Class 1100.

* Impactor handwheel is standard on all valves.

Refer to page 114 for materials of construction.

Dimensions – Angle

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

	NPS	16	18	20	24
Figure No. 4095/4095Y, 4395Y	DN	400	450	500	600
P. Contarto End (Wolding)		26	29	32.5	39
B - Center to End, (Welding)		660	737	825	991
E Contar to Top Angle (Open)		29	32	32	36
F - Center to Top, Angle (Open)		737	813	813	914
G - Handwheel Diameter		20	21	21.5	30
d - Halluwileer Dialiteter		508	533	546	762
Neight, Angle (Welding)		2675	3710	4930	8190
		1213	1682	2636	3714

Dimensions – Tilting-Disc

Eiguro No. 070V 4270V	NPS	21⁄2*	3*	4*	6	8	10
Figure No. 970Y, 4370Y	DN	65	80	100	150	200	250
A End to End (Molding)		12	12	12	22	28	34
A - End to End (Welding)		305	305	305	559	711	864
E Contor to Top		7.25	7.25	7.25	9.25	11	13
E - Center to Top		184	184	184	235	279	330
W - Width		10.5	10.5	10.5	16.5	16	20.5
vv - vviutii		267	267	267	419	406	521
Veight (Welding)		95	95	120	535	600	1010
Veight (Welding)		43	43	54	243	272	458

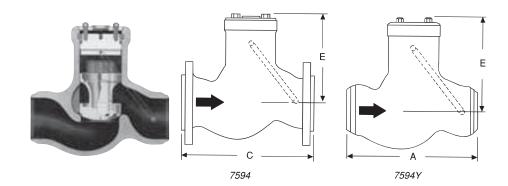

* Spiral-wound hinge pin gaskets; hinge pin torsion spring not required.

Figure No. 970Y, 4370Y	NPS	12	14	16	18	20	24
Figure No. 9701, 43701	DN	300	350	400	450	500	600
A Ford to Ford (Malding)		42	40.5	47	53	51.5	78
A - End to End (Welding)		1067	1029	1194	1346	1308	1981
E. Contor to Ton		15.75	15.75	18.75	18.75	23	36
E - Center to Top		400	400	476	476	584	914
W - Width		26.5	26.5	29	29	37.5	55
	vv - vvlatn		673	737	737	953	1397
Weight (Welding)		2090	2090	3260	3300	4510	10,200
		948	948	1479	1497	2046	4627

Refer to page 114 for materials of construction.

<u>119</u>

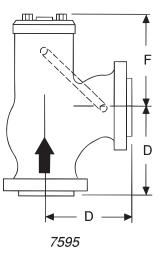
Pressure Class 1500 (PN 260)*

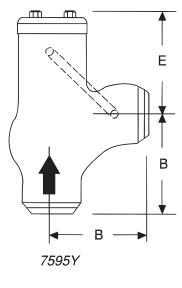
Fig.	Fig. No.		Ends	NPS (DN)		
STD CL	SPL CL	Туре	Ellus			
7594	—	Globe	Flanged	2½ (65) thru 14 (350)		
7594Y	2094Y	Globe	Butt Weld	272 (03) tinu 14 (330)		
7595	—	Angle	Flanged	2½ (65) thru 24 (600)		
7595Y	7595Y 2095Y		Butt Weld	272 (03) thru 24 (000)		
7592Y	7592Y 2092Y		Butt Weld*	3 (80) thru 24 (600)		

*Size 3 and 4 Buttweld Flite-Flow Valves are Class 1800.

Standard Features

- Bodies and covers are cast steel (WCB, WCC, WC9, CF8M)
- Pressure-seal cover OS & Y
- Globe or angle design
- Integral Stellite seats
- Body-guided disc piston
- Equipped with equalizer


Dimensions – Globe & Angle

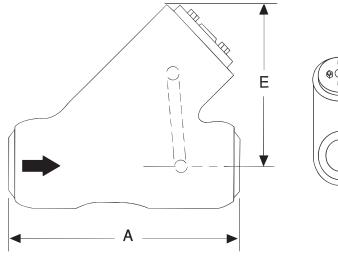

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


						-		
Figure No. 2094Y, 2095Y, 7594/7594Y,	NPS	21⁄2	3	4	5	6	8	10
7595/7595Y	DN	65	80	100	125	150	200	250
A - End to End (Welding)		13	15	18	22	24	29	33
A End to End (Weiding)		330	381	457	559	610	737	838
B - Center to End (Welding)		6.5	7.5	9	11	12	14.5	16.5
B - Center to End (Weiding)		165	190	229	279	305	368	419
C Face to Face (Flanged)		16.5	18.5	21.5	26.5	27.75	32.75	39
C - Face to Face (Flanged)		419	470	546	673	705	832	991
P. Contor to Face (Flanged)		8.25	9.25	10.75	13.25	13.88	16.38	19.5
D - Center to Face (Flanged)		210	235	273	337	353	416	495
C. Contor to Ton Clobs		9.25	11	12	13.75	15	18.75	20.75
E - Center to Top, Globe		235	279	305	349	381	476	527
		8.25	9.25	10.25	11.25	13	15.75	17.25
F - Center to Top, Angle		210	235	260	286	330	400	438
		6.75	7.75	7.75	10	10.75	12.75	14
H - Clearance for Equalizer		171	197	197	254	273	324	356
Weight Oleha (Flagged)		125	195	320	534	684	1390	2360
Weight, Globe (Flanged)		57	88	145	242	310	631	1070
		65	115	180	308	470	960	1530
Weight, Globe (Welding)		29	52	82	140	213	435	694
Weight, Angle (Flanged)		107	186	290	350	470	1070	1060
		49	84	132	159	213	485	481
		57	94	152	260	340	680	1230
Weight, Angle (Welding)		26	43	69	118	154	308	558

Refer to page 114 for materials of construction.

Dimensions – Globe & Angle

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


Figure No. 2094Y, 2095Y, 7594/7594Y,	NPS	12	14	16	18	20	24		
7595/7595Y	DN	300	350	400	450	500	600		
A End to End (Walding)		38	40.5		Value Not	Availabla			
A - End to End (Welding)	Ī	965	1029	Valve Not Available					
B - Center to End (Welding)		19	20.25	23.5	23.5	28.5	35.5		
B - Genter to Ena (Welding)	[483	514	597	597	724	902		
C - Face to Face (Flanged)		44.5	49.5						
G - Face to Face (Flangeu)		1130	1257	- Valve Not Available					
D - Center to Face (Flanged)		22.25	24.75	- Available Upon Request					
D - Genter to Face (Flangeu)	[565	629						
E - Center to Top, Globe		24.25	30	Valve Not Available					
		616	762						
		20.5	25	24.5	24.5	42	51		
F - Center to Top, Angle		521	635	622	622	1067	1295		
H - Clearance for Equalizer		15	17.38	19.5	19.5	23	28.5		
H - Glearance for Equalizer	[381	441	495	495	584	724		
Weight, Globe (Flanged)		3100	4400		Valva Not	Available			
weight, diobe (Flanged)		1406	1995			Available			
Neight Clobe (Welding)		2310	3300		Available Ur	on Doquoot			
Weight, Globe (Welding)		1040	1497]	Available U	oon Request			
Maight Angle (Flanged)		2320	3900		Valva Not	Availabla			
Weight, Angle (Flanged)		1044	1769	– Valve Not Available					
Maight Apple (Malding)		1530	2060	4700	4880	6820	11,600		
Weight, Angle (Welding)		686	927	2131	2213	3093	5261		

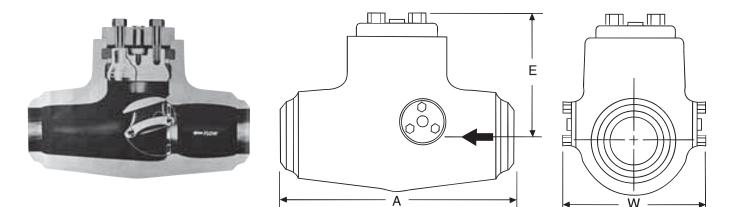
Refer to page 114 for materials of construction.

<u>121</u>

7592Y

Standard Features

- Bodies and covers are cast steel (WCB, WCC, WC9, CF8M)
- Pressure-seal cover
- Y Pattern
- Integral Stellite seats
- · Body-guided disc piston
- · Equipped with equalizer


Dimensions – Flite-Flow

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Eiguro No. 2002V 7502V	NPS	3	4	6	8	10	12	14	16	18	20	24
Figure No. 2092Y, 7592Y	DN	80	100	150	200	250	300	350	400	450	500	600
A - End to End		17	18.5	27.75	30	36.25	43	41	54	63	54.5	58
A - Ellu to Ellu		432	470	705	762	921	1092	1041	1372	1600	1384	1478
C. Contor to Ton		10	11	16	20.75	25.5	29.25	29.25	34	34	43	43
E - Center to Top		254	279	406	527	648	743	743	864	864	1092	1092
		9	10	10.75	12.75	15.75	16.5	16.5	19.5	19.5	28	28
H - Equalizer Clearance		229	254	273	324	400	419	419	495	495	711	711
Weight		140	200	480	900	1750	2525	2525	5550	5850	6700	11,200
		64	91	218	408	794	1145	1145	2517	2654	3039	5080

Refer to page 114 for materials of construction.

<u>122</u>

1570Y

Standard Features

- Bodies and covers are cast steel (WCB, WCC, WC9, CF8M)
- Pressure-seal cover
- Y Pattern
- Integral Stellite seats
- Body-guided disc piston

Dimensions – Tilting-Disc

Pressure Class 1500 (PN 260)

Fig.	Fig. No. Type		Ends	NPS (DN)		
STD CL	SPL CL	iyhe	Ellus	NF3 (DN)		
1570Y	2070Y	Tilting-Disc	Butt Weld	2½ (65) thru 24 (600)		

Black numerals are in inches and pounds

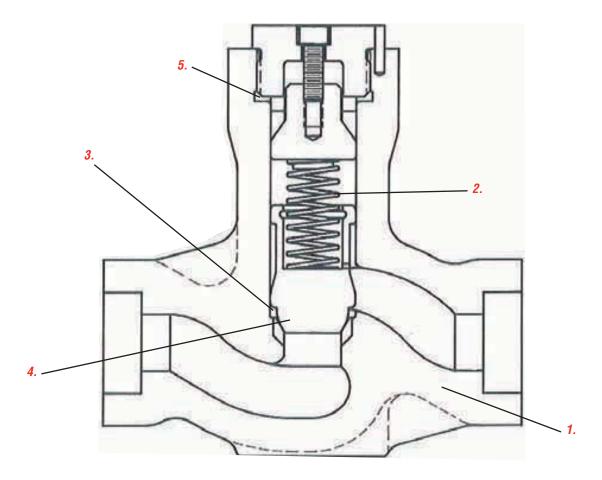
Colored numerals are in millimeters and kilograms

Figure No. 1570V 0070V	NPS	21⁄2*	3*	4*	6	8	10
Figure No. 1570Y, 2070Y	DN	65	80	100	150	200	250
		12	12	12	22	28	34
A - End to End (Welding)		305	305	305	559	711	864
Contar to Top		7.25	7.25	7.25	9.25	11	13
E - Center to Top		184	184	184	235	279	330
W - Width		10.5	10.5	10.5	16.5	16.75	20.5
vv - vvlatn		267	267	267	419	425	521
Weight (Welding)		90	90	95	460	600	1005
		41	41	43	209	272	456

* Spiral-wound hinge pin gaskets; hinge pin torsion spring not required.

Figure No. 1570Y	NPS	12	14	16	18	20	24
Figure No. 15701	DN	300	350	400	450	500	600
		42	40.5	47	53	51.5	58
A - End to End (Welding)		1067	1029	1194	1346	1308	1473
C. Contox to Ton		15.75	15.75	18.75	18.75	23	36
E - Center to Top		400	400	476	476	584	914
W - Width		26.5	26.5	29	29	37.5	55
vv - vvidtn		673	673	737	737	953	1397
Weight (Welding)		1520	1550	3280	3590	4600	10,300
		689	703	1487	1628	2087	4672

Refer to page 114 for materials of construction.



Page intentionally left blank

Anchor/Darling Check Valves

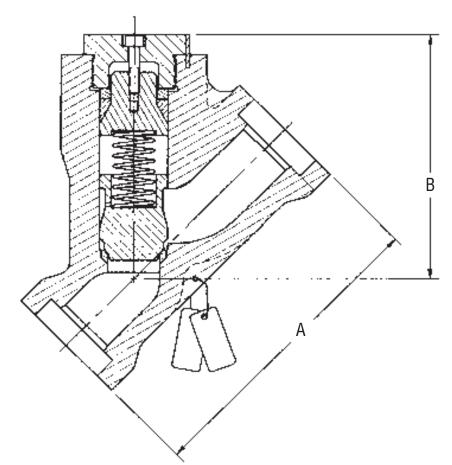
Features and Description of 1878 Series Piston Check Valves

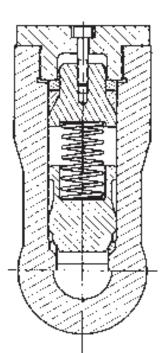
- 1. A compact, rugged, low-profile, precision cast body utilizes the latest investment casting technology. The valve offers smooth flow passages (not available in forged body designs).
- 2. Valves are stocked with spring-loaded discs that provide a 5 psi cracking pressure.
- 3. Designed for Low Leakage Rate Testing (LLRT) and stocked with EPR/EPDM resilient seated discs. A hard-seated disc is available for high-temperature applications.
- 4. The lightweight disc minimizes pressure drop. Valves are stocked with disc and seat ring of solid non-Cobalt material. Solid Cobalt chrome discs and seats (AMS-5387) can also be provided on special order.
- 5. Designed to meet ALARA programs, the valve is made to greatly reduce worker exposure. The ADVanseal® design requires no grinding, cutting or welding.

Parts Specification List for Anchor/Darling 1878 Piston Check Valves

Standard Features

• Available body material


SA216-WCB SA351-CF8M


Anchor/Darling 1878 Series piston check valves for nuclear service are normally furnished in Class 1878. Other interpolated pressure classes are also available on application. Parts shown are not applicable to all 1878 Series valves. Construction and materials for nuclear valves may vary depending upon customer design specifications. For a complete, accurate and itemized description of a particular valve, contact your local Flowserve valves sales representative.

Description	ASME/ASTM No.	ASME/ASTM No.		
Body	SA216-WCB	SA351-CF8M		
Bonnet	SA105	SA479-316		
Disc	SA564-630-1075	SA564-630-1075		
Seat	A276-S21800A	A276-S21800A		
Bonnet Retainer	SA479-316	SA479-316		
Spring	Inconel X	Inconel X		

Series 1878 Piston Check Valves, Class 1878

Black numerals are in inches and pounds

Features

- · Contoured flow path provides maximum Cv
- · Quick disassembly
- · Investment casting
- · Non-cobalt hardfacing, standard

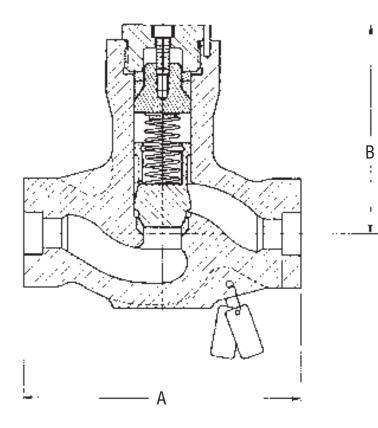
Dimensions – Y Pattern

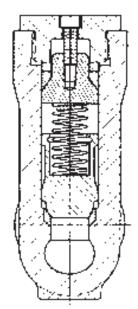
- Optional resilient seating for LLRT applications
- ADVanseal® pressure sealing system

Pressure Class 1878 (PN 325)

Fig. No. Type		Ends	NPS (DN)		
NYP79S	Piston Check	Socket Weld	½ (15) thru 2 (50)		
NYP79U	Piston Check	Butt Weld	½ (15) thru 2 (50)		

- · Positive low pressure sealing
- · Designed for long wear


Dimensions – Y Pattern	mensions – Y Pattern Colored numerals are in millimeters and kilograms									
	NPS	1/2	3⁄4	1	11/2	2*	2			
Figure No. NYP79S/NYP79U	DN	15	20	25	40	50	50			
A		5.5	5.5	5.5	7.0	8.5	8.5			
A		140	140	140	178	216	216			
D		4.7	4.7	4.7	6.1	6.1	6.8			
В		119	119	119	155	155	173			
Weight Approx (lbs.)		13	13	13	26	26	30			
		5.9	5.9	5.9	11.8	11.8	13.6			
Cv		14	16	16	48	48	76			


* Reduced ports

Refer to page 127 for materials of construction.

Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

Series 1878 Piston Check Valves, Class 1878

Features

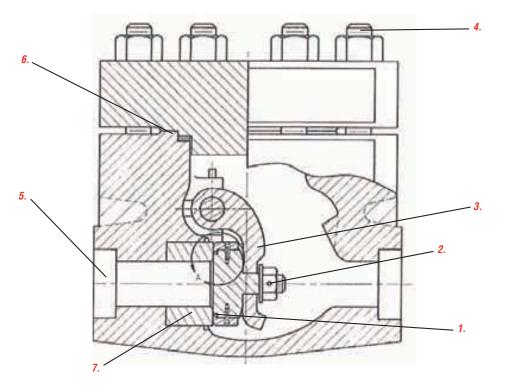
- · Designed for long wear
- · Positive low pressure sealing
- Optional resilient seating for LLRT applications
- Contoured flow path provides maximum Cv
- ADVanseal $^{\scriptscriptstyle \odot}$ pressure sealing system
- · Investment casting
- · Quick disassembly

Dimensions – T Pattern

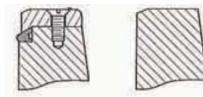
Pressure Class 1878 (PN 325)

Fig. No.	Туре	Ends	NPS (DN)		
NPC78S	Piston Check	Socket Weld	½ <mark>(15)</mark> thru 2 (50)		
NPC78U	Piston Check	Butt Weld	½ (15) thru 2 (50)		

Figure No. NPC78S/NPC78U		1/2	3⁄4	1	1½	2*	2
		15	20	25	40	50	50
A		5.5	5.5	5.5	8.5	8.5	8.5
		140	140	140	216	216	216
P		4.2	4.2	4.2	5.4	5.4	5.9
D		107	107	107	137	137	150
Weight Approx (lbs.)		11	11	11	24	24	28
		5.0	5.0	5.0	10.9	10.9	12.7
Cv		7	8	8	24	24	38


* Reduced ports

Refer to page 127 for materials of construction.


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Features and Description of 1878 Series Swing-Check Valves

1. Designed for Local Leakage Rate Testing (LLRT) and stocked with EPR resilient seated discs. A hard-seated disc is available for high-temperature applications.

• EPR resilient seating material qualified for radiation environments:

2.2X10⁷ RADS (integrated dosage) 420°F for 6 years in steam or water 450°F short-term service 5-year shelf life

• Disc SA564-630 heat treated

at 1075°F for

-high hardness to resist abrasion -available with metal seat or dual seat as shown

- 2. Disc nut fastener is locked in position to prevent loosening during operation.
- 3. Disc arms is hinge mounted on pads, readily accessible for adjustment and replacement.
- 4. Studs threaded in body to simplify and reduce time for disassembly. The (8) studs for 1½" and 2" valves and (6) studs for ½" through 1" valves provide uniform compression of the spiral-wound gasket, to ensure positive joint sealing.
- 5. Clear flow path design minimizes pressure drop.
- Built-in compression stop ensures proper gasket compression.
- 7. Valves are stocked with disc and seat ring of solid non-Cobalt material. Solid Cobalt chrome seat (AMS-5387) can also be provided on special order.

Parts Specification List for Anchor/Darling 1878 Swing-Check Valves

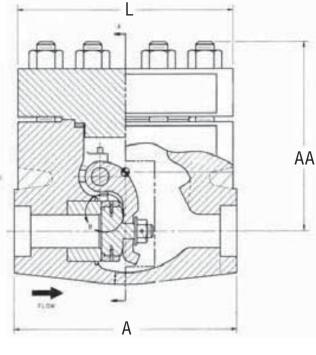
Standard Features

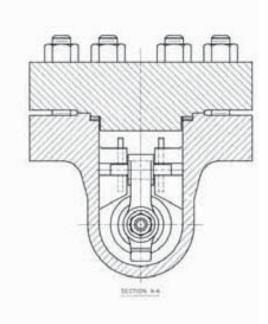
Available body material

SA216-WCB SA351-CF8M

Anchor/Darling 1878 Series swing-check valves for nuclear service are normally furnished in Class 1878. Other interpolated pressure classes are also available on application. Parts shown are not applicable to all 1878 valves. Construction and materials for nuclear valves may vary depending upon customer design specifications. For a complete, accurate and itemized description of a particular valve, contact your local Flowserve valves sales representative.

Description	ASME/ASTM No.	ASME/ASTM No.
Body	SA216-WCB	SA351-CF8M
Bonnet	SA216-WCB	SA351-CF8M
Hinge	A351-CF8M	A351-CF8M
Disc	SA564-630-1075	SA564-630-1075
Seat	A276-S21800A	A276-S21800A
Studs	SA193-B7	SA193-B7


Series 1878 Swing-Check Valves – Bolted Bonnet, Class 1878



ENLARGED DETAIL & SOLID SEATED DISC

ENLANGED DETAIL B RESILIENT SEATED DISC

Features

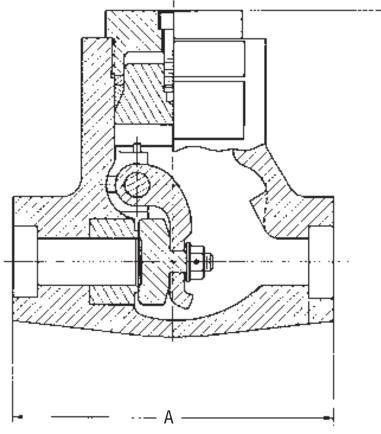
- Tight sealing
- Optional resilient seating for LLRT applications
- Minimum pressure drop
- Installation in vertical lines (with flow upward) or horizontal lines
- Ease of maintenance
- Internal disc assembly readily removed

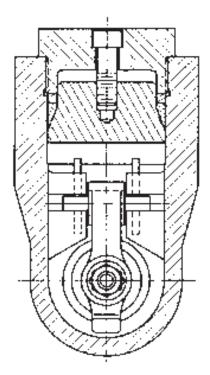
Dimensions

Pressure Class 1878 (PN 325)

Fig. No.	Туре	Ends	NPS (DN)
NSC51S	Swing Check	Socket Weld	½ (15) thru 2 (50)
NSC51U	Swing Check	Butt Weld	½ (15) thru 2 (50)

- Low Delta P to open
- · Disc arm tail stop


Black numerals are in inches and pounds
Colored numerals are in millimeters and kilograms


	NPS	1/2	3⁄4	1	1½	2
Figure No. NPC51S/NPC51U	DN	15	20	25	40	50
٨		5.5	5.5	5.5	8.5	8.5
A		140	140	140	216	216
1		5.8	5.8	5.8	8	8
L		147	147	147	203	203
AA		5.0	5.0	5.0	7.0	7.0
AA		127	127	127	178	178
Waight Approx (lbs.)		25	25	25	70	70
Weight Approx (lbs.)		11.3	11.3	11.3	31.8	31.8
Cv		3	8	14	55	85

Cv is based on sufficient flow to maintain disc in full open position.

Refer to page 131 for materials of construction.

Series 1878 Swing-Check Valves – Pressure Seal Bonnet, Class 1878

Pressure Class 1878 (PN 325)

В

т.

Fig. No.	Туре	Ends	NPS (DN)
NSC58S	Swing Check	Socket Weld	½ (15) thru 2 (50)
NSC58U	Swing Check	Butt Weld	½ (15) thru 2 (50)

- Optional resilient seating for LLRT applications
- ADVanseal® pressure sealing system

Dimonorono				iters and knograms		
	NPS	1/2	3⁄4	1	1½	2
Figure No. NSC58S/NSC58U	DN	15	20	25	40	50
Δ.		5.5	5.5	5.5	8.5	8.5
A		140	140	140	216	216
D		4.8	4.8	4.8	6.3	6.3
D		122	122	122	160	160
Waight Approx (lba)		20	20	20	45	45
Weight Approx (lbs.)		9.1	9.1	9.1	20.4	20.4
Cv		3	8	14	85	85

Other sizes available upon request.

FeaturesTight sealing

• Minimum pressure drop

· Low Delta P to open

· Disc arm tail stop

Dimensions

· One-piece investment cast body

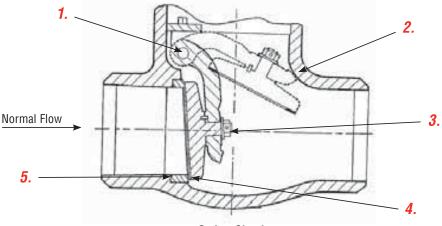
· Solid, non-cobalt seat and disc

Refer to page 131 for materials of construction.

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Features and Description of Anchor/Darling Check Valves

Swing Check

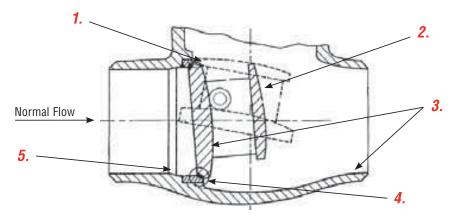

Tilting-Disc Check

Angle - Lift Check

Flowserve Anchor/Darling's years of experience in designing and manufacturing various types of custom-engineered valves ensures you of receiving the most suitable valve for your specific service. Available designs include swing, tilting disc and lift check valves. To provide even greater flexibility, valves can be furnished with either bolted bonnet or pressure seal type bonnets and flanged or weld ends. Anchor/Darling regularly supplies valves from 150 to 4500 pressure class ratings in carbon steel and a wide range of special alloys.

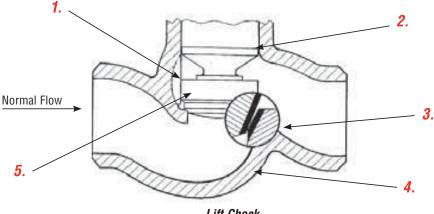
In addition to "simple" reverse flow protection, Anchor/Darling check valves can

be designed to provide numerous auxiliary modes of operation. Many of today's sophisticated applications require that the valves incorporate assurance of operability and controlled closure. Our engineering staff is available to assist the customer in determining the type of valve and actuator that best fulfills the design requirements.



Swing Check

- 1. No body penetration. Hinge is mounted on pads, readily accessible for adjustment and replacement.
- Extended hinge, which takes up normal flow impact. Prevents disc contact with body and disc pin breakage.
- **3. Fastener locked in position** to prevent loosening during operation.
- Inclined seat to provide assurance of closure even in the absence of reverse flow.
- 5. Crowned sealing surface achieves precise unit loading for a tight seal with minimal force.


<u>134</u>

Features and Description of Flowserve – Anchor/Darling Check Valves

Tilting-Disc Check

- 1. Disc stop impacts body away from sealing surfaces; it also maintains disc open in the best position to minimize pressure drop.
- 2. Hydrofoil profile maintains disc stability while being lifted by hydrodynamic forces at any flow, including pulsating.
- **3. Cast bodies and disc** permit the internal flow passages to be designed with smooth, large radius curves.
- 4. Differential seat angles between disc and seat ring ensures better seal with low seating force.
- 5. Seat rings are seal welded to minimize distortion from body stress while retaining ease of replacement.

Lift Check

- 1. Full body guides ensure correct seat alignment.
- 2. Plug skirt prevents plug from cocking even under turbulent flow conditions.
- Differential mating angles between plug and seat ring ensure tight seal with low seating force.
- 4. Cast bodies permit the internal flow passage to be designed with large radius curves.
- 5. Swivel plug ensures proper seat alignment and tight seal.

Parts Specification List for Flowserve Anchor/Darling Tilting-Disc Check Valves

This is not a complete list. Construction and materials will vary between sizes and pressure classes and may be changed without notice. For a complete, accurate and itemized description of a particular valve, contact your Flowserve valves sales representative.

Description ⁽¹⁾	ASME/ASTM No.	ASME/ASTM No.	ASME/ASTM No.	ASME/ASTM No.
Body	SA-216	SA-216	SA-217	SA-351
	Grade WCB	Grade WCC	Grade WC9	Grade CF8
Bonnet Cap	SA-515 Grade 70	A-105	A-182 Grade F22	SA-240 Grade 304
Disc	SA-216 Grade WCB	SA-105	SA-182 Grade F22	SA-351 Grade CFB
Pressure Seal Gasket*		Composite Press	sure Seal Gasket	
Bonnet Capscrews or Studs	SA-193	A-193	A-193	SA-193
	Grade B7	Grade B7	Grade B7	Grade B7
Bonnet Nuts	A-194	A-194	A-194	A-194
	Grade 2H	Grade 2H	Grade 2H	Grade 2H
Hinge Pin	A-582	A-182	A-565	A-582
	Grade 416T	Grade F6aCL4	Grade 616 HT	Grade 416T
Hinge Pin Bolts	A-193	A-193	A-193	A-453
	Grade B7	Grade B7	Grade B16	Grade 660B
Hinge Pin Retainer	SA-515 Grade 70	A-105	A-182 Grade F22	SA-240 Grade 304

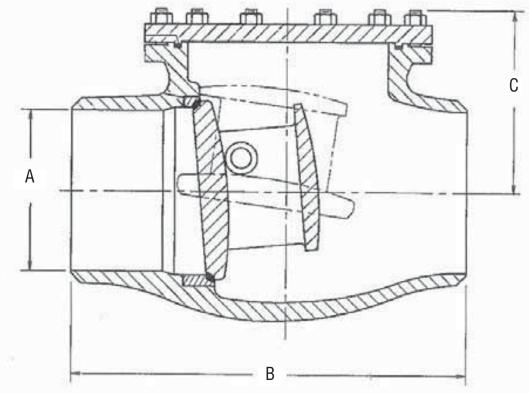
*Other material grades available on application.

Parts Specification List for Flowserve Anchor/Darling Swing-Check Valves

This is not a complete list. Construction and materials will vary between sizes and pressure classes and may be changed without notice. For a complete, accurate and itemized description of a particular valve, contact your Flowserve valves sales representative.

Description [®]	ASME/ASTM No.	ASME/ASTM No.
Body	SA-216	SA-351
	Grade WCB	Grade CF8
Bonnet Cap	SA-515	SA-240
	Grade 70	Grade F304
Hinge	A-216	A-351
Thinge	Grade WCB	Grade CF8
Disc	SA-105	SA-182
	_	Grade F304
Pressure Seal Gasket*	Composite Pres	sure Seal Gasket
Bonnet Capscrews or Studs	A-193	A-193
Donnet Capscrews of Studs	Grade B7	Grade B7
Bonnet Cover Nuts	A-194	A-194
	Grade 2H	Grade 2H
Hingo Din	A-479	A-479
Hinge Pin	Grade 316	Grade 316
Hinge Pin Retainer	A-216	A-216
רוווקל רוו הלומוולו 	Grade WCB	Grade WCB

*Other material grades available on application.



Parts Specification List for Flowserve Anchor/Darling Lift-Check Valves

This is not a complete list. Construction and materials will vary between sizes and pressure classes and may be changed without notice. For a complete, accurate and itemized description of a particular valve, contact your Flowserve valves sales representative.

Description [®]	ASME/ASTM No.	ASME/ASTM No.
Body/Cover	SA-216	SA-351
bouy/cover	Grade WCB	Grade CF8
Disc	SA-105	SA-182
D130	—	Grade F304
Pressure Seal Gasket*	Composite Pres	sure Seal Gasket
Cover Capscrews or Studs	A-193	A-193
cover capscrews of situas	Grade B7	Grade B7
O No.4-	A-194	A-194
Cover Nuts	Grade 2H	Grade 2H

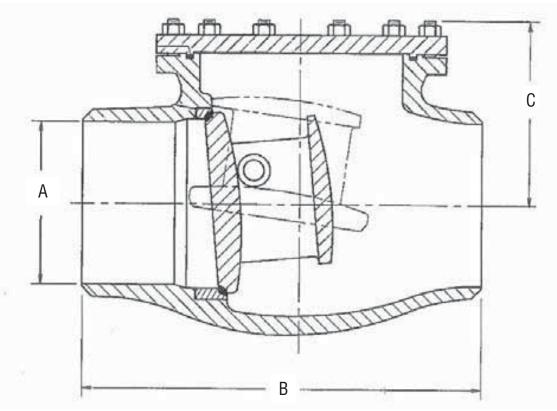
*Other material grades available on application.

Standard Features

- Carbon, stainless or special alloys
- Bolted bonnet
- Available Stellite seat and disc
- Easily accessible hinge
- Hydrofoil-style disc maintains stability
- · Heavy counterweight ensures fast reaction
- Waterhammer is minimized

Dimensions

Pressure Class 150 (PN 25)


Fig. No.	Туре	Ends	NPS (DN)
BTD63U	Tilting-Disc Check	Butt Weld	2½ (65) thru 24 (600)
BTD63C	Tilting-Disc Check	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

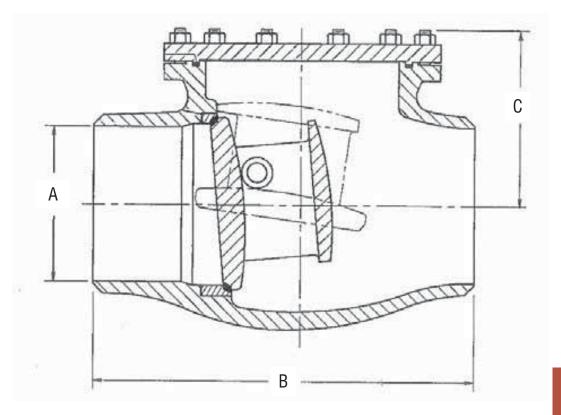
Figure No. BTD63U/BTD63C	NPS	2½	3	4	6	8	10	12	14	16	18	20	24
	DN	65	80	100	150	200	250	300	350	400	450	500	600
A		2.5	3	4	6	8	10	12	13.3	16.3	17.3	19.3	23.3
		64	76	102	152	203	254	305	338	414	439	490	592
		8.5	9.5	11.5	14	19.5	12.5	27.5	31	34	38.5	38.5	44
В		216	241	292	356	495	622	699	787	864	978	978	1,118
C		6.5	7	7.5	9	10	12.5	13.5	15	17.5	18	21	23
U		165	178	191	229	254	318	343	381	445	457	533	584
Weight Approx (lbs.)		55	75	110	200	305	480	625	945	1,210	1,675	2,440	2,920
		25.9	34.0	49.9	90.7	138.3	217.7	283.5	428.7	548.9	759.8	1,106.8	1,324.5
Cv		175	275	500	1,175	2,200	3,525	5,175	6,400	8,625	11,200	14,075	20,850

Refer to page 136 for materials of construction.

Standard Features

- Carbon, stainless or special alloys
- Bolted bonnet
- · Available Stellite seat and disc
- Easily accessible hinge
- Hydrofoil-style disc maintains stability
- Heavy counterweight ensures fast reaction
- Waterhammer is minimized

Pressure Class 300 (PN 50)


Fig. No.	Туре	Ends	NPS (DN)
CTD63U	Tilting-Disc Check	Butt Weld	2½ (65) thru 24 (600)
CTD63C	Tilting-Disc Check	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

								00.0.	0				
Figure No. CTD6211/CTD62C	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. CTD63U/CTD63C	DN	65	80	100	150	200	250	300	350	400	450	500	600
A		2.5	3	4	6	8	10	12	13.3	15.3	17	19	23
		64	76	102	152	203	254	305	338	389	432	483	584
В		11.5	12.5	14	17.5	21	24.5	28	33	34	38.5	40	44
В		292	318	356	445	533	600	711	838	864	978	1,016	1,118
C		6.5	7	7.5	10	11.5	13.5	17.5	18	19	20	21.5	23
U		165	178	191	254	292	343	445	457	483	508	546	584
Weight Approx (lbs.)		70	90	190	375	440	690	905	1,135	1,315	1,930	2,635	3,730
		31.8	40.8	86.2	170.1	199.6	313.0	410.5	514.8	596.5	875.4	1,195.2	1,691.9
Cv		175	275	500	1,175	2,200	3,525	5,175	6,400	8,625	10,875	13,700	20,425

Refer to page 136 for materials of construction.

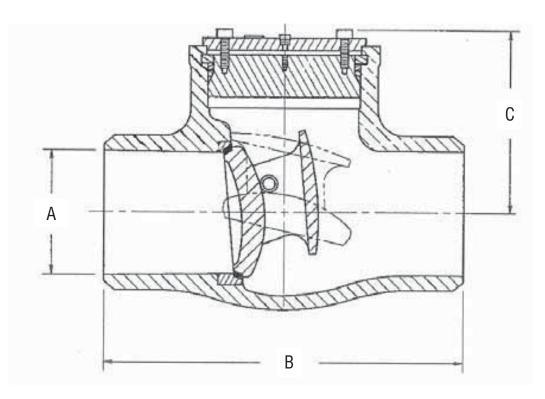
Dimensions

Standard Features

- Carbon, stainless or special alloys
- Bolted bonnet or pressure seal
- Available Stellite seat and disc
- Easily accessible hinge
- Hydrofoil-style disc maintains stability
- Heavy counterweight ensures fast reaction
- Waterhammer is minimized

Dimensions – Tilting-Disc

Pressure Class 600 (PN 110)


Fig. No.	Bonnet Type	Туре	Ends	NPS (DN)
ETD63U	Bolted Bonnet	Tilting-Disc Check	Butt Weld	2½ (65) thru 24 (600)
ETD63C	Bolted Bonnet	Tilting-Disc Check	Flanged	2½ (65) thru 24 (600)
ETD67U	Pressure Seal	Tilting-Disc Check	Butt Weld	2½ (65) thru 24 (600)
ETD67C	Pressure Seal	Tilting-Disc Check	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. ETD63U/ETD63C,	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
ETD67U/ETD67C	DN	65	80	100	150	200	250	300	350	400	450	500	600
A		2.5	3	4	6	7.9	9.8	11.8	12.9	14.8	16.5	18.3	22
		64	76	102	127	200	248	298	327	375	470	464	559
2		8.5	10	12	18	23	28	32	35	39	43	47	55
В		216	254	305	457	584	711	813	889	991	1,092	1,194	1,397
<u> </u>		5	6	7	9	11	12	13.5	15	17	21	25	27.5
С		152	152	178	229	279	305	343	381	432	533	660	699
Weight Approx (lbs.)		55	65	85	125	295	475	820	1,615	2,000	2,700	2,900	3,100
		25	29.5	38.6	56.7	133.8	215.5	372.0	823.3	907.2	1,225	1,315	1,406
Cv		175	275	500	1,275	2,100	3,300	4,900	5,950	7,950	10,100	12,450	18,375

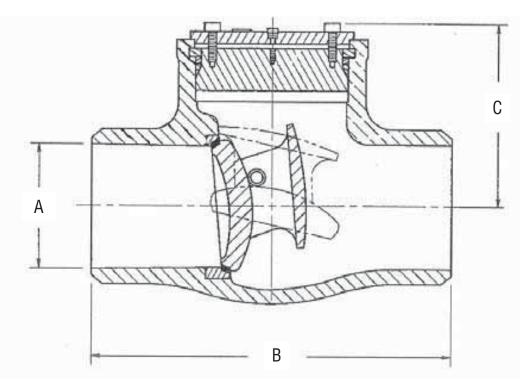
Refer to page 136 for materials of construction.

Standard Features

- · Carbon, stainless or special alloys
- Pressure seal
- Available Stellite seat and disc
- Easily accessible hinge
- Hydrofoil-style disc maintains stability
- Heavy counterweight ensures fast reaction
- Waterhammer is minimized

Dimensions – Tilting-Disc

Pressure Class 900 (PN 150)


Fig. No.	Туре	Ends	NPS (DN)
FTD67U	Tilting-Disc Check	Butt Weld	2½ (65) thru 24 (600)
FTD67C	Tilting-Disc Check	Flanged	2½ (65) thru 24 (600)

	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. FTD67U/FTD67C	DN	65	80	100	150	200	250	300	350	400	450	500	600
A		2.3	2.9	3.9	5.8	7.5	9.4	11.1	12.3	14	15.8	17.5	21
		57	73	99	146	191	238	282	311	356	400	445	533
В		10	12	14	20	26	31	38	39	43	46	50	59
B		254	305	356	508	660	787	914	991	1,092	1,219	1,270	1,499
С		6	7	7	12	12	13	15	16	21	22.5	25	28
0		152	178	178	305	305	330	381	406	533	572	635	711
Weight Approx (Ibs.)		75	100	225	350	675	990	1,875	2,315	2,775	3,845	5,250	9,600
		34.0	45.4	102.0	158.8	305.2	449.1	759.8	1,050	1,259	1,744	2,381	4,309
Cv		150	250	450	1,075	1,900	3,050	4,375	5,400	7,150	9,200	11,450	16,750

Refer to page 136 for materials of construction.

<u>142</u>

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Standard Features

- Carbon, stainless or special alloys
- Pressure seal
- Available Stellite seat and disc
- Easily accessible hinge
- Hydrofoil-style disc maintains stability
- Heavy counterweight ensures fast reaction
- Waterhammer is minimized

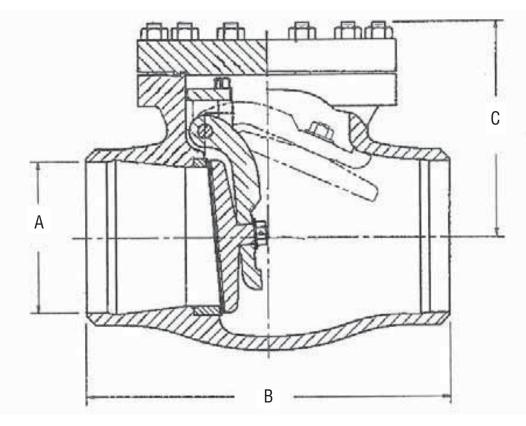
Dimensions

Pressure Class 1500 (PN 260)

Fig. No.	Туре	Ends	NPS (DN)
GTD67U	Tilting-Disc Check	Butt Weld	2½ (65) thru 24 (600)
GTD67C	Tilting-Disc Check	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds

Colored numerals are in millimeters and kilograms


	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. GTD67U/GTD67C	DN	65	80	100	150	200	250	300	350	400	450	500	600
<u>^</u>		2.3	2.8	3.6	5.4	7	8.8	10.4	11.4	13	14.6	16.4	19.6
A		57	70	92	137	178	222	264	289	330	371	416	498
		10	12	16	22	28	34	39	42	47	53	58	68
В		254	305	406	559	711	864	991	1,067	1,194	1,346	1,473	1,727
С		6	7	8	10	12	15	17	17	18.5	22	24	29.5
0		152	178	203	254	305	381	432	432	470	559	610	749
		75	145	280	325	950	1,130	2,080	2,820	3,750	4,350	8,510	11,600
Weight Approx (lbs.)		34.0	65.8	127.0	147.4	430.9	512.6	943.5	1,279	1,701	1,973	3,860	5,262
Cv		150	225	400	925	1,600	2,575	3,675	4,525	6,000	7,700	9,725	14,400

Refer to page 136 for materials of construction.

÷.

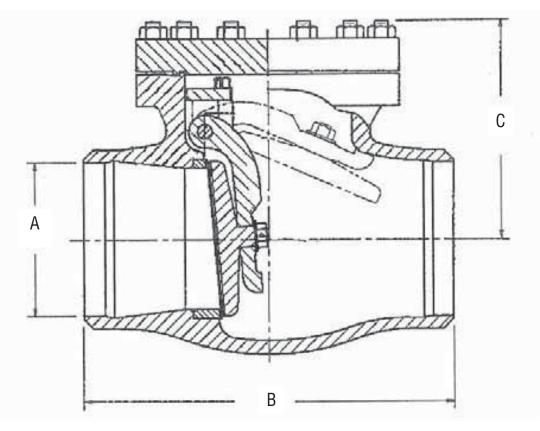
Swing-Check Valves, Class 150

Standard Features

- Carbon, stainless or special alloys
- Bolted bonnet
- · Available Stellite seat and disc
- No body penetration
- · Easily accessible hinge
- Extended hinge, preventing disc contact with body
- · Inclined seat to ensure closure even in no-flow condition

Dimensions

Pressure Class 150 (PN 25)


Fig. No.	Туре	Ends	NPS (DN)
BSC52U	Swing Check	Butt Weld	2½ (65) thru 24 (600)
BSC52C	Swing Check	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds

Dimensions	Imensions Colored numerals are in millimeters and kilograms												
	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. BSC52U/BSC52C	DN	65	80	100	150	200	250	300	350	400	450	500	600
A		2.5	3	4	6	8	10	12	13.3	16.3	17.3	19.3	23.3
		64	76	102	152	203	254	305	338	389	439	490	592
В		8.5	9.5	11.5	14	19.5	12.5	27.5	31	34	38.5	38.5	44
		216	241	292	356	495	622	699	787	864	978	978	1,118
C		6	6	6.5	8.5	11	12.5	13.5	15	16	18	21.5	25
		152	152	165	216	279	318	343	381	406	457	546	635
Weight Approx (Ibs.)		35	75	90	190	240	430	625	720	975	1,260	1,635	2,475
		15.8	34.0	40.8	86.2	108.9	195.0	283.5	326.6	442.3	571.5	741.6	1,122.7
Cv		175	275	525	1,225	2,225	3,600	5,250	6,500	8,750	11,375	14,425	21,400

Refer to page 137 for materials of construction.

Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

Standard Features

- Carbon, stainless or special alloys
- Bolted bonnet

Dimensions

- Available Stellite seat and disc
- No body penetration
- Easily accessible hinge
- Extended hinge, preventing disc contact with body
- Inclined seat to ensure closure even in no-flow condition

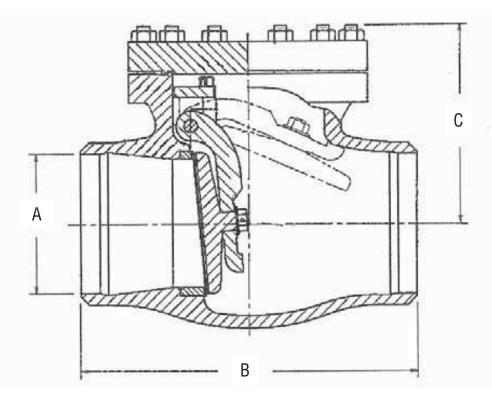

Pressure Class 300 (PN 50)

Fig. No.	Туре	Ends	NPS (DN)
CSC51U	Swing Check	Butt Weld	2½ (65) thru 24 (600)
CSC51C	Swing Check	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

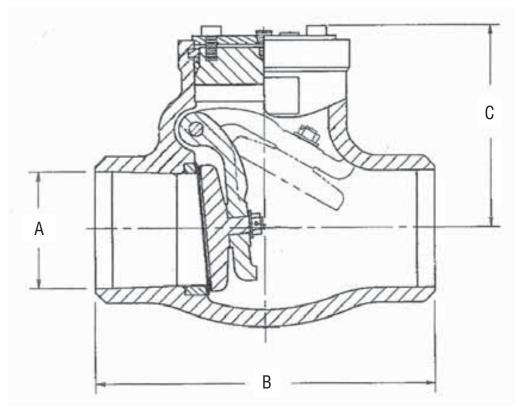
	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. CSC51U/CSC51C	DN	65	80	100	150	200	250	300	350	400	450	500	600
<u></u>		2.5	3	4	6	8	10	12	13.3	15.3	17	19	23
A		64	76	102	152	203	254	305	338	389	439	490	584
В		11.5	12.5	14	17.5	21	24.5	28	33	34	38.5	40	44
D		292	318	356	445	533	600	711	838	864	978	1,016	1,118
<u> </u>		6	6.5	7.5	9.5	12	14.5	15.5	16.5	18	20	23.5	28
С		152	168	191	241	305	368	394	419	457	508	597	711
Weight Approx (lbs)		75	100	120	280	400	650	780	990	1,245	1,645	2,325	3,290
Weight Approx (lbs.)		34.0	45.4	54.4	127.0	181.4	294.8	353.8	449.1	564.7	746.2	1,054.6	1,492.3
Cv		175	275	525	1,225	2,225	3,600	5,250	6,500	8,750	11,050	14,050	20,950

Standard Features

- Carbon, stainless or special alloys
- Bolted bonnet or pressure seal
- · Available Stellite seat and disc
- No body penetration
- Easily accessible hinge
- Extended hinge, preventing disc contact with body
- · Inclined seat to ensure closure even in no-flow condition

Dimensions – Swing

Pressure	Class	<i>600</i>	(PN	110)	
----------	-------	------------	-----	------	--


Fig. No.	Bonnet Type	Туре	Ends	NPS (DN)
ESC51U	Bolted Bonnet	Swing Check	Butt Weld	2½ (65) thru 24 (600)
ESC51C	Bolted Bonnet	Swing Check	Flanged	2½ (65) thru 24 (600)
ESC58U	Pressure Seal	Swing Check	Butt Weld	2½ (65) thru 24 (600)
ESC58C	Pressure Seal	Swing Check	Flanged	2½ (65) thru 24 (600)

y								00					linogramo
Figure No. ESC51U/ESC51C,	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
ESC58U/ESC58C	DN	65	80	100	150	200	250	300	350	400	450	500	600
A		2.5	3	4	6	7.9	9.8	11.8	12.9	14.8	16.5	18.3	22
A		64	76	102	127	200	248	298	327	375	470	464	559
В		8.5	10	12	18	23	28	32	35	39	43	47	55
B		216	254	305	457	584	711	813	889	991	1,092	1,194	1,397
С		5	7	9	13	14	18	20	23	24	25	31	36
C		127	178	229	330	356	457	508	584	610	635	787	914
Weight Approx (lbs.)		35	45	155	295	575	705	1,145	1,630	2,255	2,875	3,495	3,915
Weight Approx (lbs.)		15.9	20.4	70.3	133.8	260.8	319.8	519.4	739.4	1,023	1,304	1,585	1,776
Cv		175	275	500	1,200	2,125	3,375	5,000	6,100	8,125	10,325	12,850	19,000

Refer to page 137 for materials of construction.

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

<u>146</u>

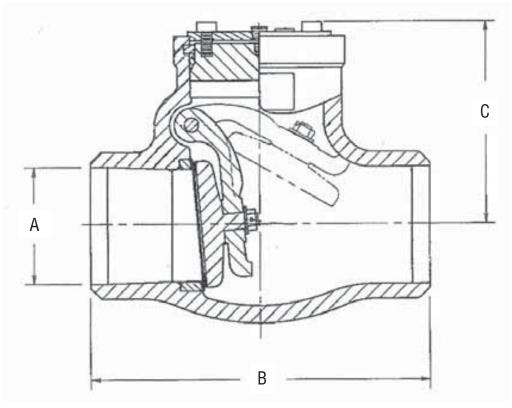
Standard Features

- Carbon, stainless or special alloys
- · Pressure seal
- Available Stellite seat and disc
- · No body penetration
- · Easily accessible hinge
- Extended hinge, preventing disc contact with body
- Inclined seat to ensure closure even in no-flow condition

Dimensions – Swing

Pressure Class 900 (PN 150)

Fig. No.	Туре	Ends	NPS (DN)
FSC58U	Swing Check	Butt Weld	2½ (65) thru 24 (600)
FSC58C	Swing Check	Flanged	2½ (65) thru 24 (600)


Dimensions – Swing								Со					kilograms
	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. FSC58U/ FSC58C	DN	65	80	100	150	200	250	300	350	400	450	500	600
A		2.3	2.9	3.9	5.8	7.5	9.4	11.1	12.3	14	15.8	17.5	21
A		57	73	99	146	191	238	282	311	356	400	445	533
В		10	12	14	20	26	31	36	39	43	46	50	59
		254	305	356	508	660	787	914	991	1,092	1,168	1,270	1,499
С		6.5	6.5	9.5	12	13.5	15	18	20	22	24	25	29
0		165	165	241	305	343	381	457	508	559	610	635	737
Weight Approx (lbs.)		50	65	145	375	600	860	1,670	1,985	2,415	3,145	4,105	6,380
		22.7	29.5	65.8	170.1	272.1	385.6	757.5	900.4	1,095	1,427	1,862	2,894
Cv		150	250	475	1,100	1,925	3,100	4,475	5,525	7,325	9,425	11,825	17,300

Refer to page 137 for materials of construction.

<u>147</u>

Black numerals are in inches and pounds

Standard Features

- · Carbon, stainless or special alloys
- Bolted bonnet or pressure seal
- · Available Stellite seat and disc
- No body penetration
- Easily accessible hinge
- · Extended hinge, preventing disc contact with body
- · Inclined seat to ensure closure even in no-flow condition

Dimensions – Swing

Pressure Class 1500 (PN 260)

Fig. No.	Туре	Ends	NPS (DN)
GSC58U	Swing Check	Butt Weld	2½ (65) thru 24 (600)
GSC58C	Swing Check	Flanged	2½ (65) thru 24 (600)

Black numerals are in inches and pounds

Colored numerals are in millimeters and kilograms

· · · · · · · · · · · · · · · · · · ·													
Figure No. GSC58U/GSC58C	NPS	21⁄2	3	4	6	8	10	12	14	16	18	20	24
Figure No. 636360/636366	DN	65	80	100	150	200	250	300	350	400	450	500	600
<u>^</u>		2.3	2.8	3.6	5.4	7	8.8	10.4	11.4	13	14.6	16.4	19.6
A		57	70	92	137	178	222	264	289	330	371	416	498
В		10	12	16	22	28	34	39	42	47	53	58	68
D		254	305	406	559	711	864	991	1,067	1,194	1,346	1,473	1,727
C		8.5	9	10	12	18	22	26	30	36	42	47	57
U		165	229	254	305	457	559	711	762	914	1,067	1,194	1,448
Waight Approx (lbs.)		50	75	160	570	1,085	1,415	2,175	2,960	3,985	4,715	7,665	8,380
Weight Approx (lbs.)		22.7	34.0	68.0	258.6	492.2	641.8	986.6	1,343	1,808	2,139	3,431	3,801
Cv		150	225	400	950	1,675	2,675	3,825	4,650	6,175	7,925	10,025	14,725

Refer to page 137 for materials of construction.

Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

Anchor/Darling Ball Valves

Features and Description of Flowserve Anchor/Darling Ball Valves

Applications

Anchor/Darling ball valves are designed and engineered to provide dependable service in demanding nuclear applications, where high performance and low maintenance costs are a necessity. Typical applications include:

- Sampling Systems (gaseous & liquid)
- Rad-Waste Cleanup Systems
- Component Cooling Systems
- Chemical Make-up Systems
- Service Water Systems
- · Instrument Air Service
- Containment Sump
- Vents & Drains
- · Air Lock Systems

Valve Options

Unmatched flexibility and cost efficiency are derived from the wide selection of three-piece and top-entry valves and the variety of selectable options. These options encompass:

- Valve Types & Sizes
- Port Configurations
- Seating Materials

- Valve Body Materials
- · Ball Materials
- Pressure Classes
- Valve Operators
- Accessories

Features

Anchor/Darling ball valves offer several inherent features in their design that are unmatched by conventional gate and globe valves. These ball valves provide:

- · Lower pressure drop due to straight-through flow paths
- · Fewer internal crevices reducing the potential for "crud" traps
- Easier and "less costly" repairs—no required cutting or disrupting of pipes is required
- Lower radiation exposure to personnel due to quick removal of all valve internals
- · Lower center of gravity minimizing seismic loads

Flowserve Anchor/Darling ball valves also feature pressureseated, blow-out-proof stems, which utilize line pressure to ensure maximum sealing action.

Flowserve can supply custom-engineered safety-related and non-safety-related ball valves to meet your specifications and requirements.

Parts Specification List for Anchor/Darling Ball Valves

Standard Features

- Available body material SA696-C SA479-316
- · Full or standard port
- · Bi-directional sealing

Parts shown are not applicable to all Ball Valves. Construction and materials for nuclear valves vary depending on customer design specifications. For a complete, accurate and itemized description of a particular valve, contact your local Flowserve valves sales representative.

Seat & Seal Material Selection Chart

Set	Seats	Stem O-Ring	Body O-Rings	Stem Seals
A	UHMWPE	EPR	EPR	UHMWPE
В	EPDM	EPR	EPR	UHMWPE
С	Teflon	EPR	EPR	RPTFE
D	Viton	Viton	Viton	UHMWPE

Materials

Description	Typical Carbon Ste	el	Typical Stainless St	teel
Description	Material	Material Spec. ASME-SA ASTM-A	Material	Material Spec. ASME-SA ASTM-A
Body	Carbon Steel	SA 696-C with Phosphate	Stainless Steel	SA479-316
Ball	Stainless Steel	SA479-316	Stainless Steel	SA479-316
Seats	See Chart		See Chart	· ·
Stem	Stainless Steel	A564-630-1075	Stainless Steel	A564-630-1075
End Pieces	Carbon Steel	SA696-C with Phosphate	Stainless Steel	SA479-316
Gland Ring	Stainless Steel	AISI 300	Stainless Steel	AISI 300
Handle	Carbon Steel	AISI 1010*	Carbon Steel	AISI 1010*
Hex Nuts	Carbon Steel	SA194-2H with Phosphate	Carbon Steel	SA194-2H with Phosphate
Lockwashers	Stainless Steel	AISI 300	Stainless Steel	AISI 300
Hex Capscrews	Alloy Steel	SA193-87 with Phosphate	Alloy Steel	SA193-87 with Phosphate
O-Rings (Body)	See Chart	·	See Chart	
O-Rings (Stem)	See Chart		See Chart	
Stem Seals	See Chart		See Chart	
Locknut (Stem)	Stainless Steel	AISI 300	Stainless Steel	AISI 300

*Denotes with zinc and plastisol coatings

E-Series/C-Series/Top-Entry Ball Valve Data

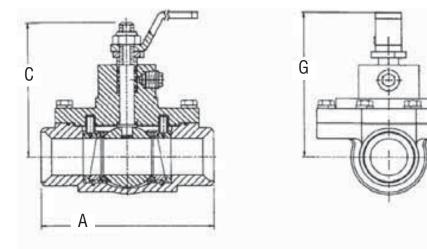
Standard Seating Materials

Temperature/radiation limits are based upon actual seating material qualification testing and/or manufacturer's recommendations:

Seat Material	Max. Temperature (continuous)	Radiation Limit (5-year exposure)		
Teflon	300°F	2 x 10⁴ Rads		
Reinforced Teflon	350°F	5 x 10⁵ Rads		
UHMWPE	200°F	8 x 10 ⁷ Rads		
Tefzel	300°F	9 x 10 ⁷ Rads		
Viton	400°F	5 x 10' Rads		
EPDM	400°F	5 x 10' Rads		

Optional seating materials are available for severe service applications; contact Flowserve for application assistance. Higher temperature excursions are permissible; consult factory for limitations.

Valve Operators


Flowserve has a complete line of valve operators available for use with Anchor/Darling ball valves.

Flow Coefficients (C_v)

Valve Size	Standard Port	Full Port	
1⁄2"	N/A	16.5	
3⁄4"	16.5	27	
1"	27	50	
11⁄4"	50	78	
11⁄2"	78	120	
2"	120	195	
21⁄2"	195	240	
3"	240	700	
4"	700	1400	Note: Values based on flow of water in gallons
6"	1400	N/A	minute (GPM) at standard conditions to achiev one (1) PSI pressure drop.

Other valve operators can be specified and supplied to suit customer requirements. Additionally, valves can be configured to mate with many existing valve operators (if appropriately sized) and accessory items (i.e., position indicating and limit switches).

Top-Entry Ball Valves, Class 150

Fig. No.	Туре	Ends	NPS (DN)
BBV96U	Ball	Butt Weld	1 (25) thru 6 (150)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

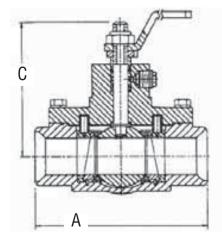
Figure No. PPV0611 Standard Port	NPS	1	11⁄4	1½	2	21⁄2	3	4	6
Figure No. BBV96U, Standard Port	DN	25	32	40	50	65	80	100	150
A		5.3	8.5	7.5	9.5	11.5	11.1	14	22
		135	216	191	241	292	282	356	559
C		4.8	5.2	5.9	6.1	7.8	8	10.1	11.9
0		122	132	150	155	198	203	257	302
G		5.9	6.3	7.4	7.6	9.1	9.4	11.4	
6		127	160	188	193	231	239	290	

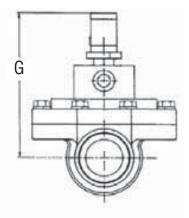
Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)
BBV93U	Ball	Butt Weld	1 (25) thru 4 (100)

Dimensions

Dimensions


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


Figure No. PDV0211 Full Port	NPS	1	11⁄4	1½	2	21⁄2	3	4
Figure No. BBV93U, Full Port	DN	25	32	40	50	65	80	100
		8.5	7.5	9.5	11.5	11.1	14	22
A	A		191	241	292	282	356	559
C	0		5.9	6.1	7.8	8	10.1	11.9
0		132	150	155	198	203	257	302
G		6.3	7.4	7.6	9.1	9.4	11.4	
		160	188	193	231	239	290	

Valve weights for top-entry valves are not published due to the customized nature of this product and the associated variables, which can affect total weight. After receiving customer's requirements for valve size, materials, valve operator requirements, etc., Anchor/Darling can furnish assembly weights. Consult factory for certified weights.

Top-Entry Ball Valves, Class 300

Pressure Class 300 (PN 50)

Fig. No.	Туре	Ends	NPS (DN)
CBV96U	Ball	Butt Weld	1 (25) thru 6 (150)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Dimensions

									•
Figure No. CBV0611 Standard Part	NPS	1	1¼	11/2	2	21⁄2	3	4	6
Figure No. CBV96U, Standard Port	DN	25	32	40	50	65	80	100	150
٨		5.3	8.5	7.5	9.5	11.5	11.1	14	22
A	A		216	191	241	292	282	356	559
C		4.8	5.2	5.9	6.1	7.8	8	10.1	11.9
0		122	132	150	155	198	203	257	302
C		5.9	6.3	7.4	7.6	9.1	9.4	11.4	
G		127	160	188	193	231	239	290	

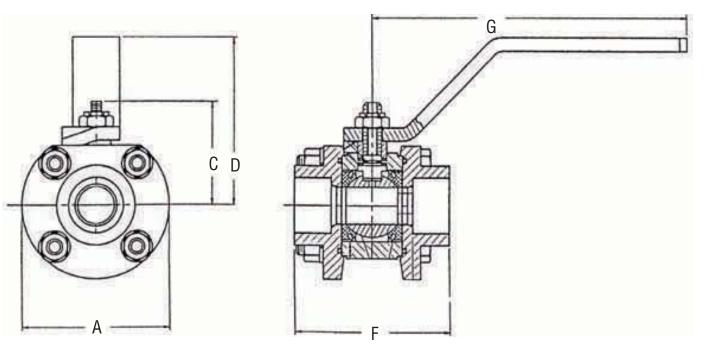
Pressure Class 300 (PN 50)

Fig. No.	Туре	Ends	NPS (DN)
CBV93U	Ball	Butt Weld	1 (25) thru 4 (100)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. CBV0211 Full Port	NPS	1	1¼	1½	2	21⁄2	3	4
Figure No. CBV93U, Full Port	DN	25	32	40	50	65	80	100
,		8.5	7.5	9.5	11.5	11.1	14	22
R			191	241	292	282	356	559
		5.2	5.9	6.1	7.8	8	10.1	11.9
0		132	150	155	198	203	257	302
G		6.3	7.4	7.6	9.1	9.4	11.4	
		160	188	193	231	239	290	

Valve weights for top-entry valves are not published due to the customized nature of this product and the associated variables, which can affect total weight. After receiving customer's requirements for valve size, materials, valve operator requirements, etc., Anchor/Darling can furnish assembly weights. Consult factory for certified weights.


Refer to page 151 for materials of construction.

<u>154</u>

Dimensions

E-Series Ball Valves Standard Port, Class 150

Carbon or stainless steel ball valve with lever actuator

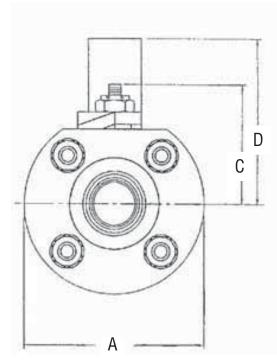
Notes

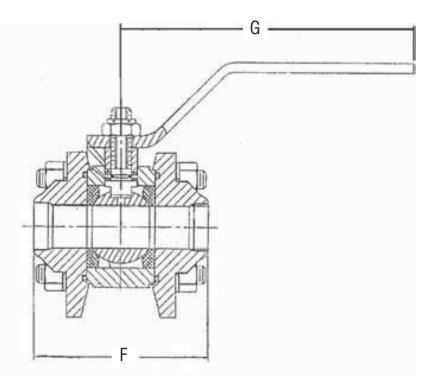
Drawing has typical information only. For installation purposes, use certified drawing.

Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)
BBV94S	Ball	Socket Weld	³ ⁄4 (20) thru 2 (50)

Dimensions


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


Figure No. DDV048	NPS	3⁄4	1	11⁄4	1½	2
Figure No. BBV94S	DN	20	25	32	40	50
٥		2.8	3.3	3.8	4.3	5
A		71	84	95	108	127
С		1.6	2.1	2.4	2.6	2.9
0		41	53	61	66	74
		2.5	3.3	4	4.3	4.6
D		64	84	102	109	117
E		2.6	3.1	3.6	4	4.6
F		66	79	91	102	117
G		6	6	7	7	9
G		152	152	178	178	229
Weight Approx (lbs.)		2.9	4.7	7.3	10.4	15.8
		1.3	2.1	3.3	4.7	7.2
Cv		16.5	27	50	78	120

E-Series Ball Valves, Standard Port, Class 150

Carbon or stainless steel ball valve with lever actuator

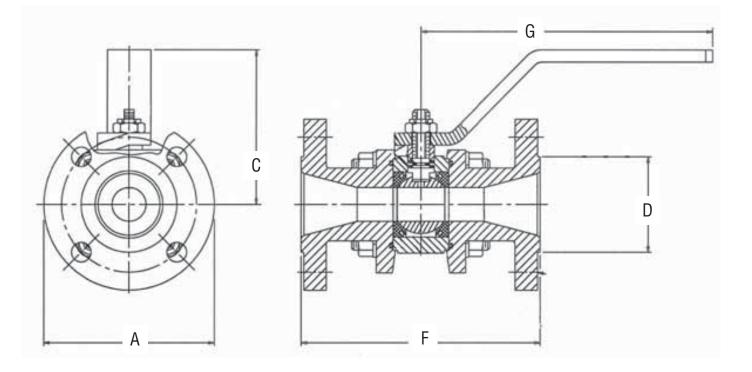
Notes

Drawing has typical information only.

For installation purposes, use certified drawing.

Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)
BBV94U	Ball	Butt Weld	2½ (20) thru 6 (50)


Dimensions

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

				oolorod hamoralo aro in himmotoro ana mogram			
	NPS	21/2	3	4	6		
Figure No. BBV94U	DN	65	80	100	150		
A		5.5	6.8	8.3	10.5		
		140	173	211	267		
C		3.3	3.6	5.3	7.3		
C		84	91	135	185		
D		4.9	5.8	7.1	9.1		
D		124	147	180	231		
F		6.0	6.8	8.1	10.1		
F		152	173	206	257		
G		9.0	12.0	16.0	28.0		
G		229	305	406	711		
Waight Approx (lba)		18	30	56	120		
Weight Approx (lbs.)		8.2	13.6	25.4	54.4		
Cv		195	240	700	1400		

E-Series Ball Valves, Standard Port, Class 150

Carbon or stainless steel ball valve with lever actuator

Notes

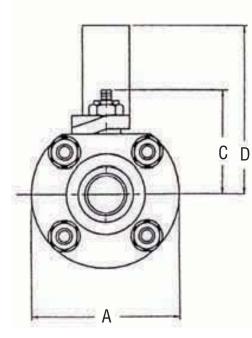
Dimensions

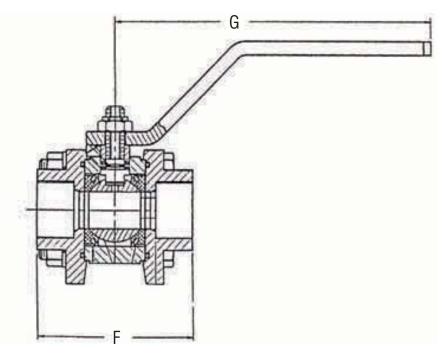
Drawing has typical information only.

For installation purposes, use certified drawing.

Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)
BBV94C	Ball	Flanged	2½ (65) thru 6 (150)


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


	NPS	21⁄2	3	4	6
Figure No. BBV94C	DN	65	80	100	150
٨		5.5	6.8	8.3	10.5
A		140	173	211	267
C .		3.3	3.6	5.3	7.3
6		84	91	135	185
D		4.9	5.8	7.1	9.1
D		124	147	180	231
F		10.3	10.3	12	14.3
		262	262	305	363
G		9.0	12.0	16.0	28
G		229	305	406	711
Waight Approx (lbs.)		38	54	92	181
Weight Approx (lbs.)		17.2	24.5	41.7	82.1
Cv		195	240	700	1400

E-Series Ball Valves Full Port, Class 150

Carbon or stainless steel ball valve with lever actuator

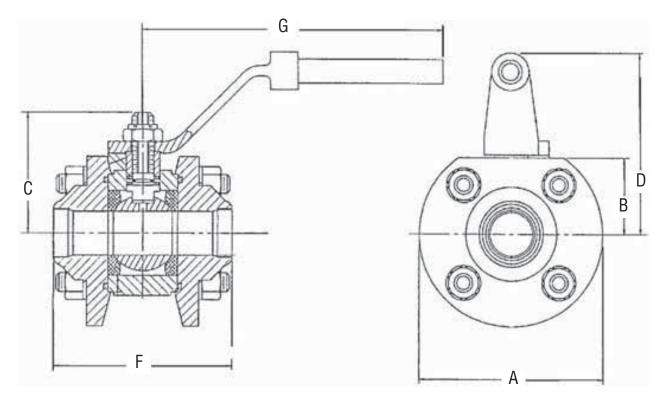
Notes

Drawing has typical information only.

For installation purposes, use certified drawing.

Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)
BBV95S	Ball	Socket Weld	½ (15) thru 2 (50)


Dimensions

Plack numerals are in inches and nounds	
DIACK HUIHELAIS ALE III HICHES AND DUUHUS	Black numerals are in inches and pounds
	Colored numerals are in millimeters and kilograms

	NPS	1⁄2	3⁄4	1	11⁄4	1½	2
Figure No. BBV95S	DN	15	20	25	32	40	50
		2.8	3.3	3.8	4.3	5.0	6.3
A		71	84	97	109	127	160
0		1.6	2.1	2.4	2.6	2.9	3.3
C		41	53	61	66	74	84
D -		2.5	3.3	4	4.3	4.6	5
		64	84	102	109	117	127
r		2.6	3.1	3.6	4	4.6	6
r	-		79	91	102	117	152
G		6	6	7	7	9	9
G		152	152	178	178	229	229
		2.9	4.7	7.3	10.4	15.8	23.8
Weight Approx		1.3	2.1	3.3	4.7	7.2	10.8
Cv		16.5	27	50	78	120	195

E-Series Ball Valves, Full Port, Class 150

Carbon or stainless steel ball valve with lever actuator

Notes

Dimensions

Drawing has typical information only. For installation purposes, use certified drawing.

Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)
BBV95U	Ball	Butt Weld	3 (80) and 4 (100)

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

	NPS	3	4		
Figure No. BBV95U	DN	80	100		
٨		8.3	10.5		
A	[211	267		
В		3.5			
D		89			
C		5.3	7.3		
6		135	185		
П		7.1	9.3		
D		180	236		
E		8.1	10.1		
I		206	257		
3 C D = G Weight Approx (Ibs.)		16.0	28.0		
u		406	711		
Weight Approx (lbs.)		57	120		
		25.9	54.4		
Cv		700	1400		

E-Series Ball Valves, Full Port, Class 150

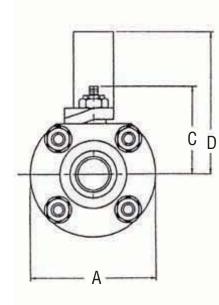
Carbon or stainless steel ball valve with lever actuator

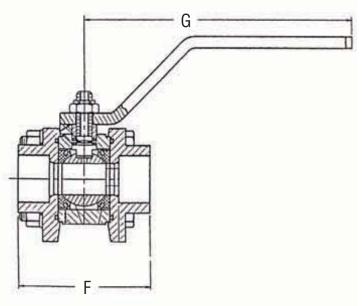
Notes

Drawing has typical information only.

For installation purposes, use certified drawing.

Pressure Class 150 (PN 25)


Fig. No.	Туре	Ends	NPS (DN)
BBV95C	Ball	Flanged	3 (80) and 4 (100)


Dimensions

	NPS	3	4		
Figure No. BBV95C	DN	80	100		
٨		8.3	10.5		
A		211	267		
C		5.3	7.3		
		135	185		
D		7.1	9.3		
		180	236		
F		12	14.3		
F		305	363		
0		16	28		
G		406	711		
Weight Approx (lbs.)		80	153		
weight Applox (lbs.)	prox (lbs.) <u>36.3</u>		69.4		
Cv		700	1400		

E-Series Ball Valves Standard Port, Class 300

Carbon or stainless steel ball valve with lever actuator

Notes

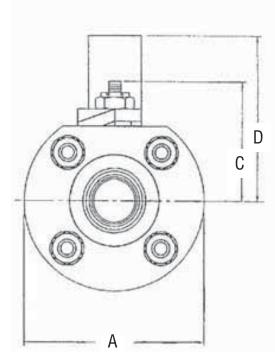
Drawing has typical information only.

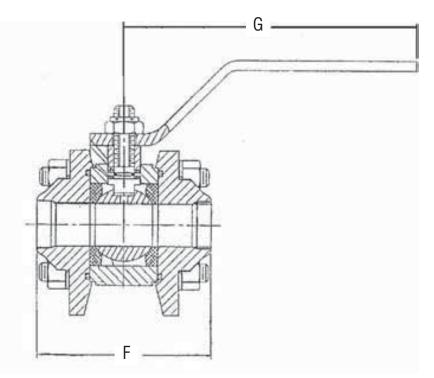
For installation purposes, use certified drawing.

Pressure Class 300 (PN 50)

Fig. No.	Туре	Ends	NPS <mark>(DN)</mark>
CBV94S	Ball	Socket Weld	³ ⁄4 (20) thru 2 (50)

Dimensions


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


	NPS	3⁄4	1	11⁄4	1½	2
Figure No. CBV94S	DN	20	25	32	40	50
٥		2.8	3.3	3.8	4.3	5
A		71	84	95	108	127
С		1.6	2.1	2.4	2.6	2.9
C		41	53	61	66	74
D		2.5	3.3	4	4.3	4.6
		64	84	102	109	117
F	F -		3.1	3.6	4	4.6
F			79	91	102	117
c		6	6	7	7	9
G		152	152	178	178	229
Weight Approx (lbs.)		2.9	4.7	7.3	10.4	15.8
		1.3	2.1	3.3	4.7	7.2
Cv		16.5	27	50	78	120

E-Series Ball Valves, Standard Port, Class 300

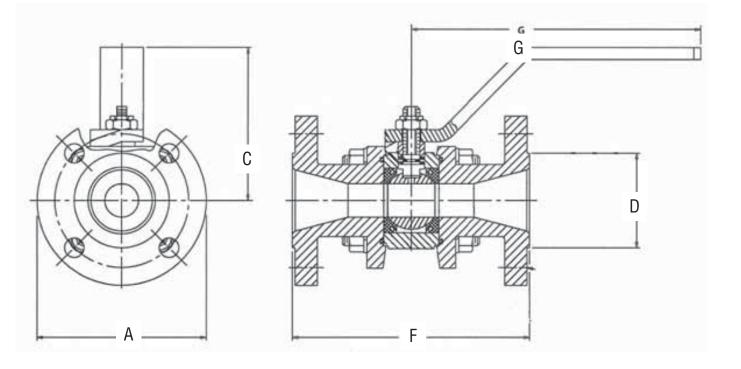
Carbon or stainless steel ball valve with lever actuator

Notes

Drawing has typical information only. For installation purposes, use certified drawing.

Pressure Class 300 (PN 50)

Fig. No.	Туре	Ends	NPS (DN)
CBV94U	Ball	Butt Weld	3 (20) thru 4 (50)


Dimensions

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

	NPS	21/2	3	4	6
Figure No. CBV94U	DN	65	80	100	150
٨		5.5	6.8	8.3	10.5
4		140	173	211	267
^		3.3	3.6	5.3	7.3
L.		84	91	135	185
D		4.9	5.8	7.1	9.1
		124	147	180	231
-		6.0	6.8	8.1	10.1
-		152	173	206	257
3		9.0	12.0	16.0	28.0
a		229	305	406	711
Neight Approx (lbs.)		18	30	56	120
Weight Approx (lbs.)		8.2	13.6	25.4	54.4
Cv		195	240	700	1400

E-Series Ball Valve, Standard Port, Class 300

Carbon or stainless steel ball valve with lever actuator

Notes

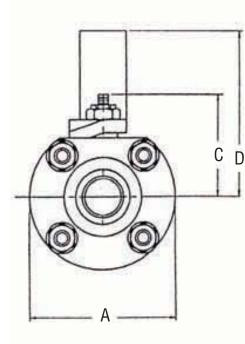
Drawing has typical information only.

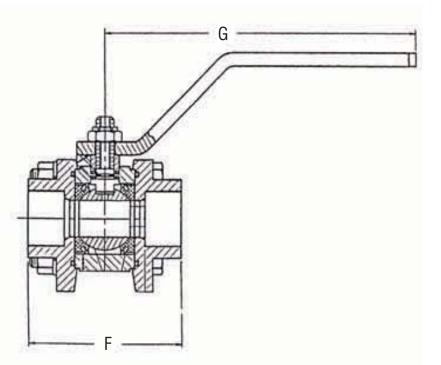
For installation purposes, use certified drawing.

Pressure Class 300 (PN 50)

Fig. No.	Туре	Ends	NPS (DN)		
CBV94C	Ball	Flanged	2½ (65) thru 6 (150)		

Dimensions


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


Figure No. CBV94C	NPS	21/2	3	4	6
Figure No. CBV94C	DN	65	80	100	150
Α		5.5	6.8	8.3	10.5
7		140	173	211	267
r.		3.3	3.6	5.3	7.3
li i		84	91	135	185
D		4.9	5.8	7.1	9.1
D		124	147	180	231
=		10.5	11	13	15.5
F		267	279	330	394
0		9.0	12.0	16.0	28.0
G		229	305	406	711
Noight Approx (lbs.)		42	63	112	221
Weight Approx (lbs.)		19.1	28.6	50.8	100.2
Cv		195	240	700	1400

E-Series Ball Valves Full Port, Class 300

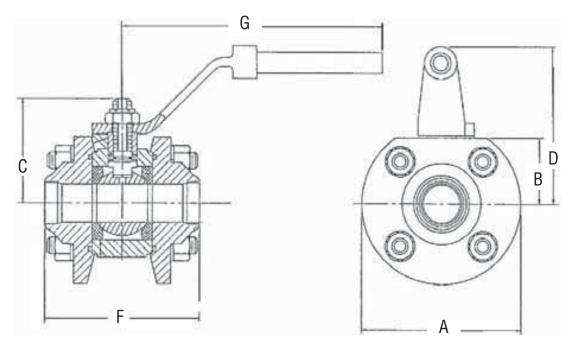
Carbon or stainless steel ball valve with lever actuator

Notes

Drawing has typical information only. For installation purposes, use certified drawing.

Pressure Class 300 (PN 50)

Fig. No.	Туре	Ends	NPS (DN)		
CBV95S	Ball	Socket Weld	1 (15) thru 2 (50)		


Dimensions

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. CBV95S	NPS	1⁄2	3⁄4	1	11⁄4	1½	2
iyure No. 00v900	DN	15	20	25	32	40	50
۵		2.8	3.3	3.8	4.3	5.0	6.3
A		71	84	97	109	127	160
0		1.6	2.1	2.4	2.6	2.9	3.4
C		41	53	61	66	74	84
		2.5	3.4	4	4.3	4.6	5
D		64	84	102	109	117	127
F		2.6	3.1	3.6	4	4.6	6
F		66	79	91	102	117	152
G		6	6	7	7	9	9
6		152	152	178	178	229	229
Maight Approx (lbg.)		2.9	4.7	7.3	10.4	15.8	23.8
Weight Approx (lbs.)		1.3	2.1	3.3	4.7	7.2	10.8
Cv		16.5	27	50	78	120	195

E-Series Ball Valves, Full Port, Class 300

Carbon or stainless steel ball valve with lever actuator

Notes

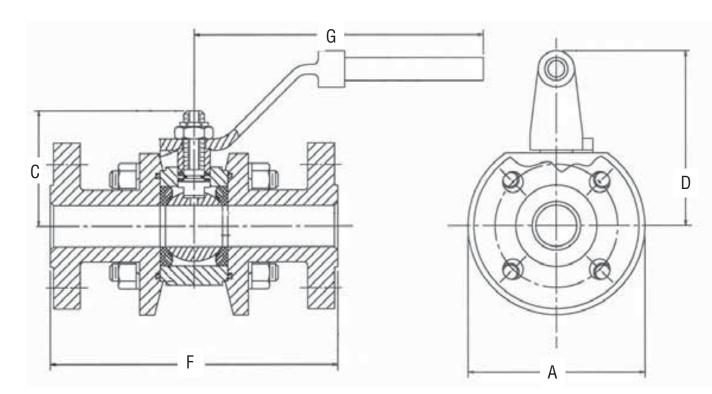
Dimensions

Drawing has typical information only.

For installation purposes, use certified drawing.

Pressure Class 300 (PN 50)

Fig. No.	Туре	Ends	NPS (DN)		
CBV95U	Ball	Butt Weld	3 (80) and 4 (100)		


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

	NPS	3	4		
Figure No. CBV95U	DN	80	100		
٨		8.3	10.5		
A		211	267		
В		3.5			
D		89			
С	5.3		7.3		
0		135	185		
D		7.1	9.3		
U		180	236		
E		8.1	10.1		
Г		206	257		
G		16.0	28		
u		406	711		
Weight Approx (lbs.)		57	120		
		25.9	54.4		
Cv		700	1400		

E-Series Ball Valves, Full Port, Class 300

Carbon or stainless steel ball valve with lever actuator

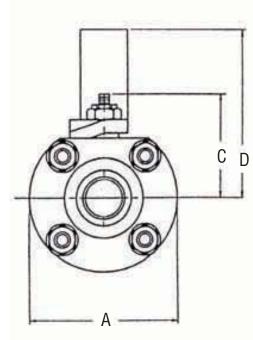
Notes

Dimensions

Drawing has typical information only.

For installation purposes, use certified drawing.

Pressure Class 300 (PN 50)


Fig. No.	Туре	Ends	NPS (DN)
CBV95C	Ball	Flanged	3 (80) and 4 (100)

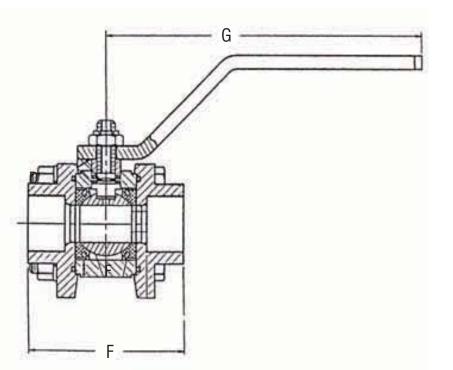

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. CBV95C	NPS	3	4
FIGULE NO. COV950	DN	80	100
٨		8.3	10.5
A		211	267
С		5.3	7.3
6		135	185
D	7.1		9.3
0		180	236
E	13.0		15.5
F		330	394
G		16.0	25
9		406	635
Waight Approx (lba)		88	173
Weight Approx (lbs.)		40.0	78.5
Cv		700	1400

E-Series Ball Valves Standard Port, Class 600

Carbon or stainless steel ball valve with lever actuator

Notes

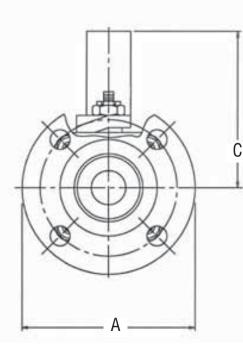
Drawing has typical information only.

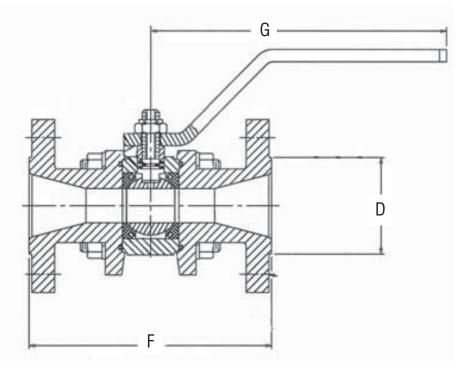
For installation purposes, use certified drawing.

Pressure Class 600 (PN 100)

Fig. No.	Туре	Ends	NPS <mark>(DN)</mark>
EBV94S	Ball	Socket Weld	½ (15) thru 2 (50)

Dimensions


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


Figure No. EBV94S	NPS	3⁄4	1	1¼	1½	2
i igui e No. Edv 948	DN	20	25	32	40	50
٥		2.8	3.3	3.8	4.3	5
A		71	84	95	108	127
С		1.6	2.1	2.4	2.6	2.9
0		41	53	61	66	74
D		2.5	3.3	4	4.3	4.6
D		64	84	102	109	117
E		2.6	3.1	3.6	4	4.6
F		66	79	91	102	117
G		6	6	7	7	9
-		152	152	178	178	229
Maight Approx (lbs.)		2.9	4.7	7.3	10.4	15.8
Weight Approx (lbs.)		1.3	2.1	3.3	4.7	7.2
Cv		16.5	27	50	78	120

Ball Valves, Standard Port, E-Series, Flanged Ends, Class 600

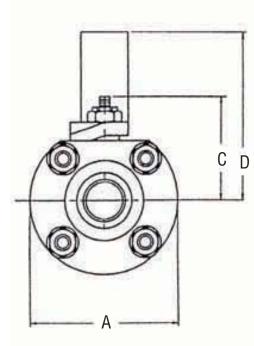
Carbon or stainless steel ball valve with lever actuator

Notes

Drawing has typical information only. For installation purposes, use certified drawing.

Pressure Class 600 (PN 110)

Fig. No.	Туре	Ends	NPS <mark>(DN)</mark>
EBV94C	Ball	Flanged	¾ (20) thru 2 (50)


Dimensions

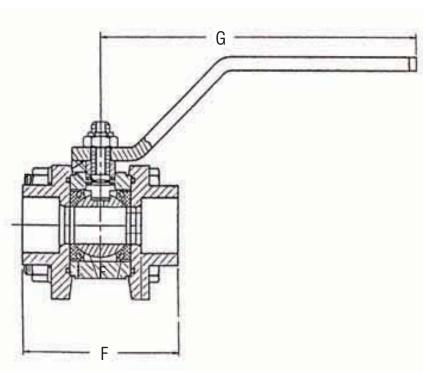

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. EDV04C	NPS	3⁄4	1	11⁄4	1½	2
Figure No. EBV94C	DN	20	25	32	40	50
٨		4.6	4.9	5.3	6.1	6.5
A		117	124	135	155	165
C		2.5	3.3	4	4.3	4.6
L C		64	84	102	109	117
D		1.7	2.0	2.5	2.9	3.6
D		43	51	64	74	91
E		6.5	6.8	7.8	8.8	9.3
F		165	173	198	224	236
G		6.0	6.0	7.0	7.0	9.0
6		152	152	178	178	229
Weight Approx (lbg)		11.6	14.1	20.7	29.6	36.5
Weight Approx (lbs.)		5.3	6.4	9.4	13.4	16.6
Cv		16.5	27	50	78	120

E-Series Ball Valves Full Port, Class 600

Carbon or stainless steel ball valve with lever actuator

Notes

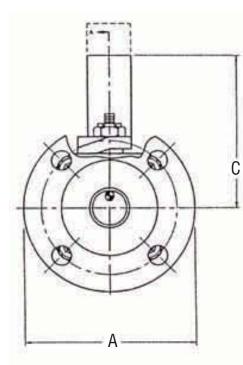
Drawing has typical information only.

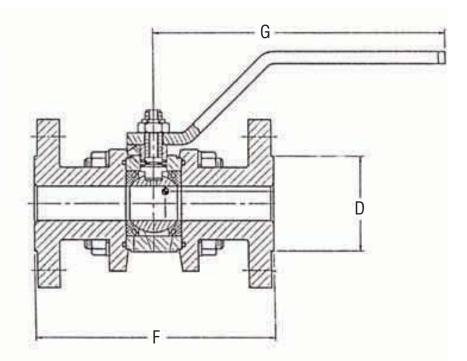
For installation purposes, use certified drawing.

Pressure Class 600 (PN 100)

Fig. No. Type		Ends	NPS (DN)	
EBV95S	Ball	Socket Weld	½ (15) thru 2 (50)	

Dimensions


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


	NPS	1/2	3⁄4	1	11⁄4	1½	2
Figure No. EBV95S	DN	15	20	25	32	40	50
A		2.8	3.3	3.8	4.3	5	6.3
A		71	84	97	109	127	160
С		1.6	2.1	2.4	2.6	2.9	3.4
6	-	41	53	61	66	74	86
		2.5	3.4	4	4.3	4.6	5
D		64	86	102	109	117	127
F		2.6	3.1	3.6	4	4.6	6
F	-	66	79	91	102	117	152
C		6	6	7	7	9	9
G		152	152	178	178	229	229
Weight Approx (lbs.)		2.9	4.7	7.3	10.4	15.8	23.8
		1.3	6.2	3.3	4.7	7.2	10.8
Cv		16.5	27	50	78	120	195

Ball Valves, Full Port, E-Series, Raised Face Flanged Ends, Class 600

Carbon or stainless steel ball valve with lever actuator

Notes

Drawing has typical information only.

For installation purposes, use certified drawing.

Pressure Class 600 (PN 100)

Fig. No.	Туре	Ends	NPS (DN)
EBV95C	Ball	Flanged	½ (15) thru 2 (50)

Dimensions Black numerals are in inches and p Colored numerals are in millimeters and kilo Colored numerals are in millimeters and kilo							
	NPS	1⁄2	3⁄4	1	11⁄4	1½	2
Figure No. EBV95C	DN	15	20	25	32	40	50
A		3.8	4.6	4.9	5.3	6.1	6.5
A		97	117	124	135	155	165
6		2.5	3.4	4	4.5	4.6	5
C		64	84	102	114	117	127
D		1.4	1.7	2.0	2.5	2.9	3.6
D		36	43	51	64	74	91
r.		6.5	6.8	7.8	8.8	9.3	11
F		165	173	198	224	236	279
0		6	6	7	7	9	9
G		152	152	178	178	229	229
Weight Approx (lbs.)		8.2	13	17.5	24	35	46.3
		3.7	5.9	7.9	10.9	15.9	21
Cv		16.5	27	50	78	120	195

Refer to page 151 for materials of construction.

Black numerals are in inches and pounds

Page intentionally left blank

Page intentionally left blank

Anchor/Darling Butterfly Valves

Features and Description of Flowserve Anchor/Darling Butterfly Valves

High-Performance, Pressure-Assisted Seating

Anchor/Darling has applied our vast knowledge and experience in materials, manufacturing and design to our butterfly valves. Anchor/Darling butterfly valves incorporate proven performance features into an economically designed package. The result is a valve that offers the optimum combination of performance and life-cycle cost.

So when you need the best value in a proven butterfly valve, specify Flowserve Anchor/Darling.

Features That Ensure Dependable Operation

- High operating pressures... to 1440 PSI.
- Excellent flow and throttling characteristics.
- High operating temperatures... to 500°F.
- High-performance, pressure-assisted bi-directional seat.
- Self-compensating seat design for maximum performance.
- Pressure-balanced shaft reduces thrust wear.
- Bubble-tight shut-off.
- Low torque for smooth and easy operation.
- Available with lift-to-unlock handle that automatically locks when released.

- Handle positions in 15-degree increments.
- Easily adaptable to automatic operation with electric, pneumatic or hydraulic actuators.
- Fourteen sizes from 3 inches to 48 inches inclusive.
- Suitable for vacuum service.
- Wide-band disc sealing area.
- Compact design cuts weight and space requirements.
- Heavy-duty corrosion-resistant shaft bearings.
- · Adjustable shaft packing.
- Available in wafer, lugged, or flanged body design.
- Also available: Direct replacements for Contromatics butterfly valves.

SIZE (in.)	150#L	150#W	300#L	300#W	600#L	600#W
3	33	30	35	30	40	35
4	45	40	45	40	65	50
6	60	55	65	55	130	70
8	125	115	135	115	215	147
10	175	156	200	156	417	306
12	240	170	275	200	556	425
14	350	270	570	325	648	498
16	450	345	790	510	858	693
18	600	450	1050	625	1148	884
20	850	540	1500	972	1568	1248
24	1300	750	2061	1200	—	
30	2300	1700	—	—	—	
36	3700	2850	_		—	
48	_	5100	_	_	_	

Approximate Weights by Valve Design (lb)

Notes: 1) Weights are approximate and believed to be conservative. Weights for larger valves will vary considerably with face-to-face dimensions. Always consult the factory when evaluating replacements for specific equipment. 2) Weights include an allowance for typical actuator mounting brackets.

Standard Materials of Construction

Anchor/Darling High-Performance Valves

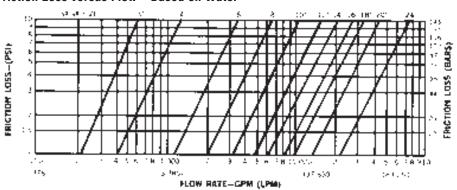
Description for 3" through 36" Butterfly Valves (wafer and lugged design)

PART NO.	DESCRIPTION	MATERIAL CARBON STEEL	MATERIAL STAINLESS STEEL
1	SHAFT	17 – 4 PH	17 – 4 PH
2	GLAND RETAINER	CARBON STEEL	CARBON STEEL
3	GLAND RING	300 STAINLESS STEEL	300 STAINLESS STEEL
4	PACKING	GRAPHITE	GRAPHITE
5	GLAND RING	300 STAINLESS STEEL	300 STAINLESS STEEL
6	BUSHING	BRONZE	BRONZE
7	THRUST WASHER	BRONZE	BRONZE
8	DISC PIN	316 STAINLESS STEEL	316 STAINLESS STEEL
9	DISC	SEE NOTE #1	316 STAINLESS STEEL
10	BODY	CARBON STEEL	316 STAINLESS STEEL
11	0-RING	VITON OR EPR	VITON OR EPR
12	SEAT	SEE NOTE #2	SEE NOTE #2
13	SEAT RETAINER	CARBON STEEL	316 STAINLESS STEEL
14	NUT	CARBON STEEL	CARBON STEEL
15	STUD	CARBON STEEL	CARBON STEEL
16	SOCKET HD. CAP SCREW	ALLOY STEEL	ALLOY STEEL
17	SEAL (NOTE #3)	VITON OR EPR	VITON OR EPR
18	RETAINER (NOTE #3)	316 STAINLESS STEEL	316 STAINLESS STEEL

Notes: 1) 3" through 10" carbon steel valves supplied with 316 stainless disc, sizes 12" and above supplied with carbon steel disc with electroless nickel plating. 2) Standard valves are supplied with reinforced fluoropolymer seat. Ultra-high-molecular-weight polyethylene, tefzel and ethylene propylene seat materials are also available. 3) Applies to 24" through 36" sizes only. 4) 16" through 20" Class 300, 24" through 36" Class 150, and 10" through 20" Class 600 employ upper and lower shafts.

Standard Materials of Construction

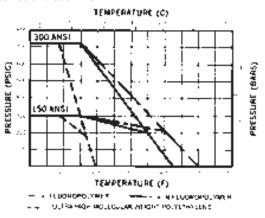
Anchor/Darling High-Performance Valves


Description for 48" Class 150 Wafer Design

PART NO.	DESCRIPTION	MATERIAL CARBON STEEL	MATERIAL STAINLESS STEEL
1	BODY	CARBON STEEL	316 STAINLESS STEEL
2	UPPER SHAFT	17 – 4 PH	17 – 4 PH
3	HEX HEAD CAPSCREW	ALLOY STEEL	ALLOY STEEL
4	GLAND RING	300 STAINLESS STEEL	300 STAINLESS STEEL
5	0-RING (BODY)	VITON OR EPR	VITON OR EPR
6	O-RING (SHAFT)	VITON OR EPR	VITON OR EPR
7	BUSHING	BRONZE	BRONZE
8	THRUST WASHER	BRONZE	BRONZE
9	DISC	CARBON STEEL	316 STAINLESS STEEL
10	LOWER SHAFT	17 – 4 PH	17 – 4 PH
11	GASKET	NITRILE	NITRILE
12	SHAFT CAP	CARBON STEEL	316 STAINLESS STEEL
13	SEAT RETAINER	CARBON STEEL	316 STAINLESS STEEL
14	SEAT	SEE NOTE #2	SEE NOTE #2
15	PIN	316 STAINLESS STEEL	316 STAINLESS STEEL
16	PIN RETAINER	316 STAINLESS STEEL	316 STAINLESS STEEL
17	0-RING (PIN RETAINER)	VITON OR EPR	VITON OR EPR
18	SOCKET HEAD CAPSCREW	ALLOY STEEL	ALLOY STEEL
19	SHAFT COUPLING	CARBON STEEL	316 STAINLESS STEEL
20	KEY	CARBON STEEL	CARBON STEEL
21	TRAVEL STOP	CARBON STEEL	316 STAINLESS STEEL
22	SOCKET HEAD CAPSCREW	ALLOY STEEL	ALLOY STEEL
23	EYE BOLTS	CARBON STEEL	CARBON STEEL
24	LOCKWASHER	CARBON STEEL	STAINLESS STEEL
25	DRIVE SCREW	STAINLESS STEEL	STAINLESS STEEL
26	NAMEPLATE	STAINLESS STEEL	STAINLESS STEEL
27	NATIONAL BOARD TAG	STAINLESS STEEL	STAINLESS STEEL
28	JAM NUT	CARBON STEEL	CARBON STEEL
29	DISC ORIENTATION TAG	STAINLESS STEEL	STAINLESS STEEL

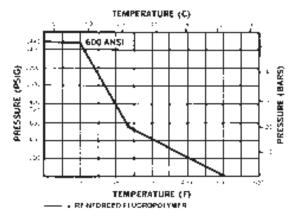
Notes: 1) Travel stop is optional. 2) Standard valves are supplied with EPR/EPDM seat. Reinforced fluoropolymer and ultra-high-molecularweight polyethylene (UHMWPE) seats are also available. 3) National board tag is optional.

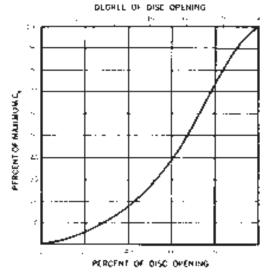
Performance Characteristics


Anchor/Darling High-Performance Valves

Friction Loss versus Flow - Based on Water

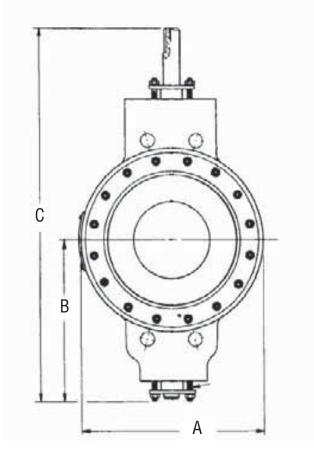
Pressure/Temperature Capability

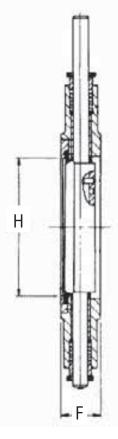

Class 150 and 300 ANSI


Cv values

Size (inches)	150	300
3	210	210
4	400	400
6	1150	1150
8	2100	2100
10	3410	3410
12	6525	4800
14	8400	6100
16	11000	7400
18	14800	9600
20	18700	11900
24	22000	*
30	30000	*
36	50000	*
48	95000	*

Class 600 ANSI



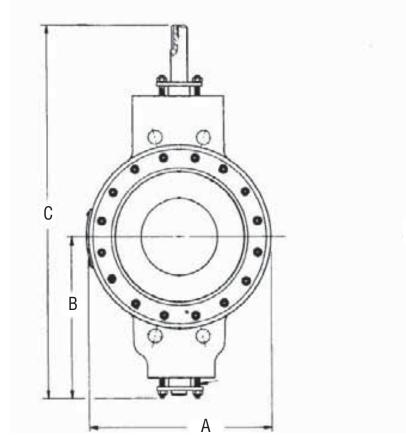

Flow Characteristics

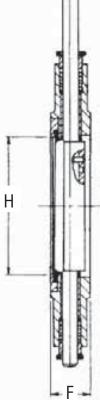
Butterfly Valve, Class 150

Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)	
BBF89V	Butterfly	Wafer	3 (80) thru 10 (250)	

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


Dimonorono							
	NPS	3	4	6	8	10	
Figure No. BBF89V	DN	80	100	150	200	250	
Δ		5.1	6.8	8.9	10.9	13.1	
A		130	173	226	277	333	
P		5.9	7.1	8	10.5	13.1	
В		150	180	203	267	333	
0		12.5	15	17	19	25	
0		318	381	432	483	635	
F		1.9	2.1	2.3	2.5	2.8	
		48	53	58	64	71	
		2.8	3.9	5.8	7.6	9.5	
Н		71	99	147	193	241	


Dimensions are approximate and may vary. Always consult installation drawing. Refer to page 175 for materials of construction.

Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

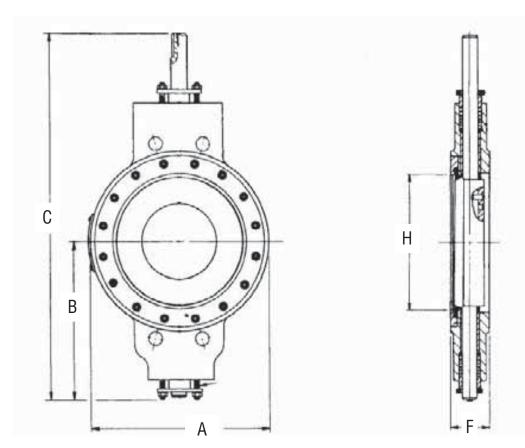
Dimensions

Butterfly Valve, Class 150

Pressure Class 150 (PN 25)

Fig. No.	Туре	Ends	NPS (DN)
BBF89V	Butterfly	Wafer	12 (300) thru 20 (500)

Dimensions


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

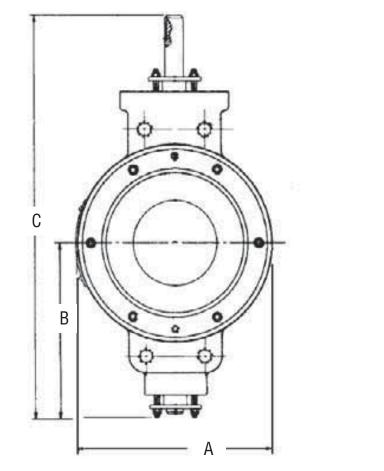
	NPS	12	14	16	18	20
Figure No. BBF89V	DN	300	350	400	450	500
A		15.1	16.4	20	21.3	23.3
		384	417	508	541	592
В		8.7	9.8	14.6	15.3	17.4
		221	249	371	389	442
C		21.7	24.6	32.8	34.1	38.2
		551	625	833	866	970
F		3.2	3.2	4.2	4.6	5.2
		81	81	107	117	132
Н		11.8	12.9	14.8	16.7	18.7
		300	328	376	424	475

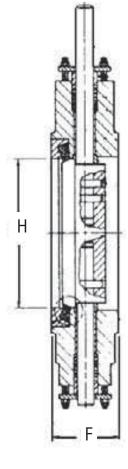
Dimensions are approximate and may vary. Always consult installation drawing. Refer to page 175 for materials of construction.

Butterfly Valve, Class 300

Pressure Class 300 (PN 50)

Fig. No.	Туре	Ends	NPS (DN)
CBF89V	Butterfly	Wafer	3 (80) thru 10 (250)


Dimensions


							nu kiiograms				
Figure No.	NPS	3	4	6	8	10	12	14	16	18	20
CBF89V	DN	80	100	150	200	250	300	350	400	450	500
٨		5.1	6.8	8.9	10.9	13.1	15.8	17.4	18.6	21.1	23.1
A		130	173	226	277	333	401	442	472	536	587
		5.9	7.1	8	10.5	13.1	12.6	13.1	15.6	17.2	19.5
В		150	180	203	267	333	320	333	396	437	495
0		12.5	15	17	19	25	29.8	31	32.5	35.9	43.5
С		318	381	432	483	635	757	787	826	912	1,105
г		1.9	2.1	2.3	2.5	2.8	3.2	3.8	6.2	6.9	7.3
Г		48	53	58	64	71	81	97	157	175	185
Н		2.8	3.9	5.8	7.6	9.5	11.4	12.8	14.8	16.6	18.5
		71	99	147	103	241	290	325	376	422	470

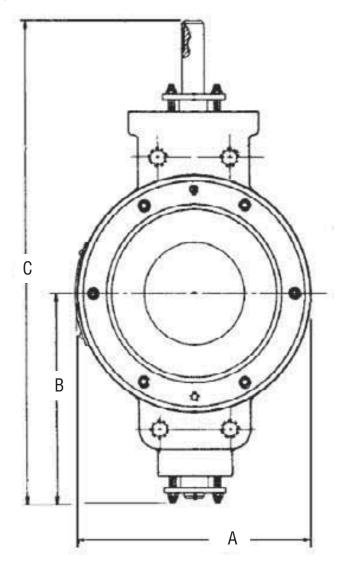
Dimensions are approximate and may vary. Always consult installation drawing. Refer to page 175 for materials of construction.

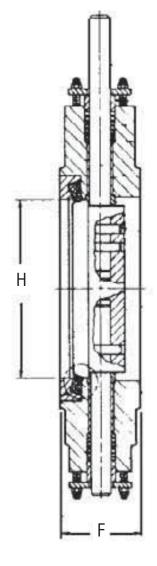
<u> 180</u>

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Pressure Class 600 (PN 110)

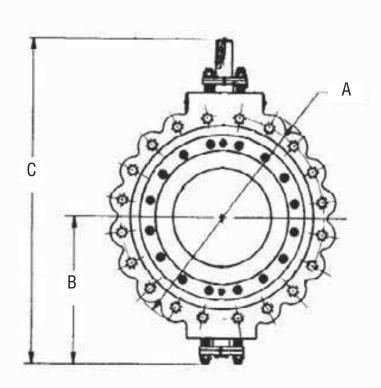
Fig. No. Type		Ends	NPS (DN)
EBF89V	Butterfly	Wafer	3 (80) and 4 (100)

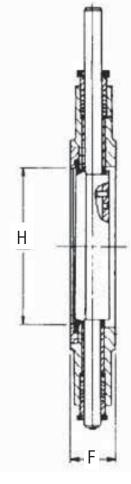

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


Dimonorono			oolored numerals are in minimeters and knograms
Figure No. EBF89V	NPS	3	4
FIYUIC NO. EDF09V	DN	80	100
٨		5.1	6.3
A		130	160
В		4.8	5.8
D		122	147
C		11.5	13.9
0		292	353
C		2.4	2.5
F		61	64
Н		2.9	3.6
11		74	91

Dimensions are approximate and may vary. Always consult installation drawing. Sizes 16" through 20" employ upper and lower shafts Refer to page 175 for materials of construction.

Dimensions




Dimensions

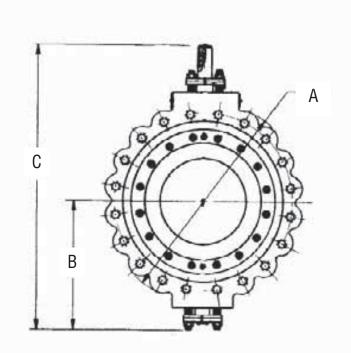
Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

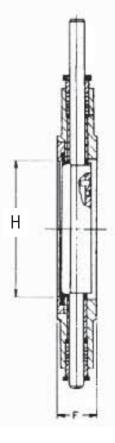
Figure No. EBF89V	NPS	6	8	10	12	14	16	18	20
FIGULE NO. EDF09V	DN	150	200	250	300	350	400	450	500
A		8.6	10.7	12.9	15.3	16.4	18.8	21.3	23.3
		218	272	328	389	417	478	541	592
В		8.9	10.6	12.6	14.4	15.3	18.6	20.1	21.5
		226	269	320	366	389	472	511	546
С		19.8	22.9	27.1	31	33.3	39.4	43.6	46.3
0		503	582	688	787	846	1,001	1,107	1,176
с		3.6	3.9	5.9	6.8	7.6	8.3	9.1	9.9
F		91	99	150	173	193	211	231	251
Н		5.8	7.3	9.8	11.4	12.5	14.3	16.1	18
		147	185	249	290	318	363	409	457

Dimensions are approximate and may vary. Always consult installation drawing. Refer to page 175 for materials of construction.

Pressure Class 150 (PN 25)

Fig. No. Type		Ends	NPS (DN)	
BBF89L	Butterfly	Lugged	3 (80) thru 20 (500)	


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


	NPS	3	4	6	8	10	12	14	16	18	20
Figure No. BBF89L	DN	80	100	150	200	250	300	350	400	450	500
		7.5	9	11	13.5	16	19	21	23.5	25	27.5
A		191	229	279	343	406	483	533	597	635	699
В		3.2	4.9	5.7	6.9	8.4	9.9	10.9	14.7	15.3	17.4
D	Б	81	124	145	175	213	251	277	373	389	442
0		9.8	12.4	14.9	18.1	19.5	22.9	25.6	32.8	34.1	38.2
6		249	315	378	460	495	582	650	833	866	970
г.		2	2.1	2.3	2.5	2.8	3.2	3.2	4.1	4.6	5.1
Г	51	53	58	64	71	81	81	104	117	130	
Н		2.8	3.9	5.8	7.6	9.8	11.8	12.9	14.8	16.7	18.7
		71	99	147	193	249	300	328	376	424	475

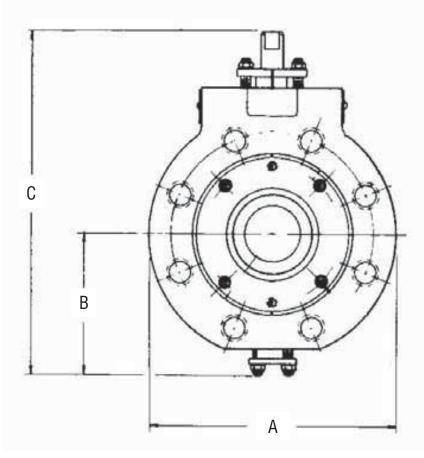
Refer to page 175 for materials of construction.

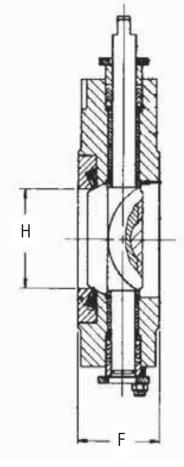
Dimensions

Pressure Class 300 (PN 50)

Fig. No.	Fig. No. Type		NPS (DN)
CBL91L	Butterfly	Lugged	3 (80) thru 20 (500)

NPS 3 6 8 10 12 18 20 4 14 16 Figure No. CBL91L 200 DN 80 100 150 250 300 350 400 450 500 8.3 10.0 12.5 15.0 17.5 20.5 23.0 25.5 28.0 30.5 А 445 211 254 318 381 521 584 648 711 775 17.4 5.9 5.4 7.6 8.4 11.1 12.6 13.1 15.6 19.5 В 150 137 193 213 282 320 333 396 442 495 31.0 12.5 12.9 16.9 19.6 26.8 29.8 32.5 35.9 43.1 С 318 328 429 498 681 757 787 826 912 1,095 2.5 7.3 1.9 2.1 2.3 2.8 3.2 3.8 6.2 6.9 F 48 53 58 64 71 81 97 157 175 185 2.8 3.9 5.8 7.6 9.5 11.4 12.8 14.8 16.6 18.5 Н 71 99 147 193 241 290 325 376 422 470


Refer to page 175 for materials of construction.


<u>184</u>

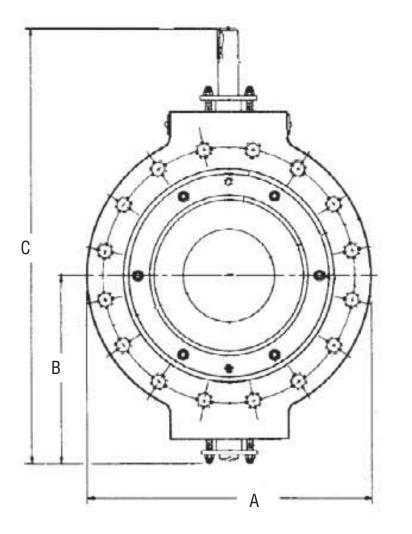
Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

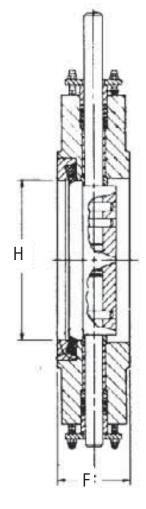
Dimensions

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Pressure Class 600 (PN 110)

Fig. No.	Туре	Ends	NPS (DN)
EBF89L	Butterfly	Lugged	3 (80) thru 20 (500)


Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms


	NPS	3	4
Figure No. EBF89L	DN	65	80
٨		8.3	10.8
A		211	274
В		4.8	5.8
D		122	147
C		11.5	13.9
0		292	353
E		2.4	2.5
1		61	64
Н		2.9	3.6
п		74	91

Dimensions are approximate and may vary. Always consult installation drawing. Refer to page 175 for materials of construction.

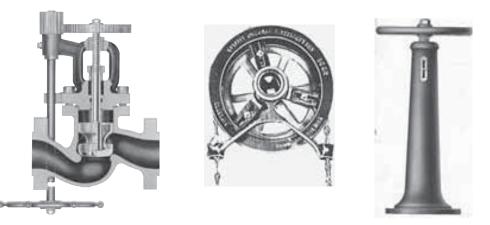
Dimensions

Dimensions

Black numerals are in inches and pounds Colored numerals are in millimeters and kilograms

Figure No. EBF89L	NPS	6	8	10	12	14	16	18	20
FIYUIE NU. EDFOSL	DN	150	200	250	300	350	400	450	500
۸		14	16.5	20	22	23.8	27	29.3	32
A		356	419	508	559	605	686	744	813
P		8.9	10.6	12.6	14.4	15.3	18.6	20.1	21.5
В		226	269	320	366	389	472	511	546
С		19.8	22.9	27.1	31	33.3	39.4	43.6	46.3
U		503	582	688	787	846	1,001	1,107	1,176
c		3.6	3.9	5.9	6.8	7.6	8.3	9.1	9.9
F		91	99	150	173	193	211	231	251
Н		5.8	7.3	9.8	11.4	12.5	14.3	16.1	18
		147	185	249	290	318	363	409	457

Dimensions are approximate and may vary. Always consult installation drawing. Refer to page 175 for materials of construction.


<u> 186</u>

flowserve.com

Accessories/Actuators

Accessories

Globe, Angle, Gate

By-Passes for Larger Cast Steel Valves (See Pg. 216)

Edward by-pass valves conform to the latest edition of MSS-SP45 of the Manufacturers Standardization Society of the Valve and Fittings Industry.

Unless otherwise specified when globe and angle valves are ordered with by-pass attached, the by-pass is attached to the left hand side of the valve when viewed from the overseat end.

Edward Forged Steel Valves for use as by-passes

Socket Welding Ends Only	Class 600	Class 900	Class 1500	Class 2500	Series 4500	
For use on main stop valve	Globe style, By-pass	Fig. A848Y*	Fig. D36224	Fig. D36224	Fig. D66224	Fig. D96224
For use on main stop-check valve	Globe style, By-pass	Fig. A868Y**	Fig. D36264	Fig. D36264	Fig. D66264	Fig. D96264

* ALL MOTOR ACTUATED BY-PASS VALVES WILL BE FURNISHED WITH FIG. D36224.

** ALL MOTOR ACTUATED BY-PASS VALVES WILL BE FURNISHED WITH FIG. D36264.

Standard sizes of by-pass valves*

Main valve size (all pressures)	4	5	6	8	10 to 24
By-Pass size	1/2	3⁄4	3⁄4	3⁄4	1

* By-passes are provided only when specified. Standard sizes of by-pass valves are in accordance with the table above. Larger size by-pass valves will be furnished on special order.

Floor Stands

Edward floor stands are cast iron or fabricated steel, and are designed and machined for accurate alignment. They are regularly furnished painted and are faced on bottom and drilled. Two heights, 20 and 32 inches, are available and can be furnished in indicating or non-indicating types. Spur and motor control floor stands can be furnished to meet special conditions.

Chain Wheels

A simple and efficient means of valve operation from a lower level is provided by the use of chain wheels. They are fitted to the regular valve handwheels and are furnished complete with chain wheel and chain guide.

Valve Extension

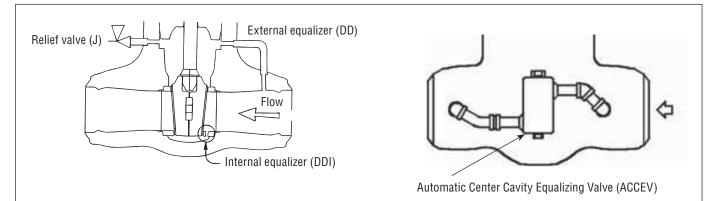
Illustration shows spur geared valve with extension stem for operation from below. Valves can also be furnished for extension operation above the valve. Larger size valves are also available with bevel gearing.

Accessories – Cast and Forged Steel

The following "accessories" or "options" are available for Edward forged and cast steel valves. Consult your Edward valves sales representative for specific details.

Impactor Handwheel

Larger size Edward valves (except gate valves) feature an Impactor handwheel that permits one or two men to develop several thousand ft. lbs. of torque for final valve closure — up to twelve times the force of an ordinary handwheel.



Impactogear[®]

The Edward Impactogear makes cycling of larger, high-pressure valves a one-man operation. Impactogear is an exclusive Edward ring gear and pinion assembly that is fastened to an Impactor handwheel and yoke. Using the mechanical advantage of gearing reduction, the assembly permits large valves to be cycled between full open and full closed with an air wrench operating off a nominal air supply. The Impactogear wrench connection is equipped with a safety wrench guard.

Custom Paint

Unless otherwise specified Edward cast and forged (carbon or alloy) steel valves are painted with a high-temperature aluminum lacquer paint. Upon special order, Edward valves can be provided with customer specified paints or coatings.

Drain or Vent

All Edward cast steel valves can be supplied with drains and/or vents. A standard drain or vent pipe, six inches long, is socket welded to the valve body, or as specified by the customer.

External Equalizer

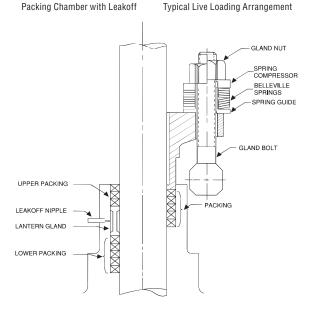
A pipe that connects the bonnet cavity of the Equiwedge gate valve to the upstream side of the valve. See drawing and page 28 for additional information.

Internal Equalizer

A hole drilled in the upstream seat ring of the Equiwedge Gate Valve for pressure equalization. See drawing and page 28 for additional information.

Relief Valve

A pressure relief valve can be attached to the bonnet of the Equiwedge Gate Valve to protect against overpressurization, but not prevent pressure locking. See drawing and page 28 for additional information.


Automatic Center Cavity Equalizing Valve

A fully automatic bonnet relief device that allows bi-directional seating even at low pressure differential. See drawing and page 190 for details.

Accessories – Cast and Forged Steel

Examples of a Typical Packing Leakoff (left) and Live Load Packing Gland (right)

The following "accessories" or "options" are available for Flowserve Edward forged and cast steel valves. Consult your Flowserve Edward valves sales representative for specific details.

Leakoff

The left half of the schematic to the left depicts a typical Leakoff arrangement including lantern gland and upper and lower packing sets. This double-packing arrangement provides added protection against packing leaks.

Live Loading

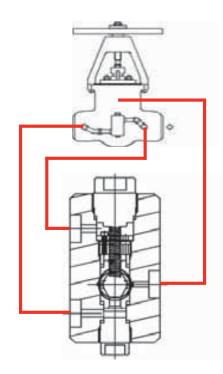
The right half of the schematic to the left depicts a typical live loaded packing assembly. The Belleville springs provide a constant packing load to compensate for packing consolidation and thermal effects.

Locking Devices

Edward valves can be provided with padlock and chain or other locking devices as specified.

Position Indicators & Limit Switches

If required, Edward valves can be fitted with a variety of position indicators and/or limit switches for remote indication.


Soft Seats

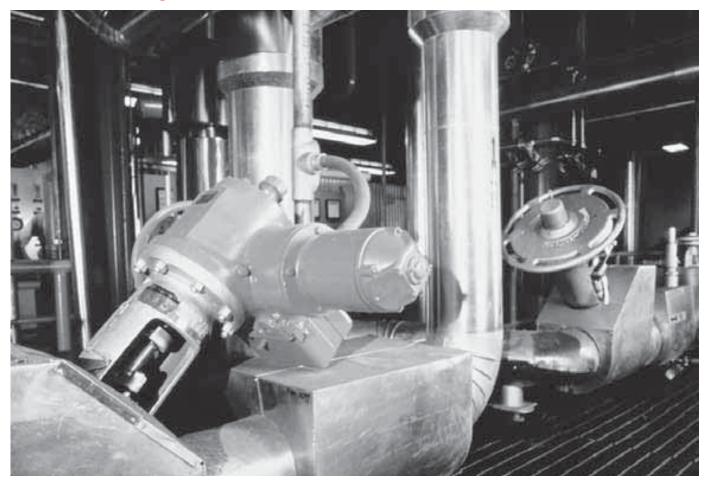
This option is available for both forged and cast steel globe and check valves on a limited basis.

The disc face can be fitted with a soft seat or insert when drop tight sealing is a must. However, some limitations (temperature, differential pressure, radiation) may apply. Consult your Flowserve Edward valves representative for more information.

Washout Connections

Edward cast steel valves can be fitted with special covers that incorporate a pipe nipple to be used as a washout connection to introduce cleaning solutions, etc., for pipeline flushing.

190


Automatic Center Cavity Equalizing Valve (ACCEV)

The Flowserve Edward ACCEV automatically relieves increasing center cavity pressure to the higher pressure end of the valve, while preventing leakage to the lower pressure end, solving pressure locking and bonnet over-pressurization problems that can occur in double-seated valves. The internal spring gives preferential connection to the designated upstream end of the valve. When system conditions result in the downstream pressure being higher than the upstream, the ball shifts so that the center cavity connects with the downstream end of the valve. The Edward ACCEV meets or exceeds MSS SP-61 for

tight shutoff in both directions. When furnished on an Edward Equiwedge gate valve, all of the necessary connections are made to the host valve and hydro-tested in our factory. No piping connections or testing are required by the user. The Edward ACCEV is available as a kit with necessary piping to be field installed on any existing Edward or other manufacturer's valve, and can be readily dissassembled and repaired in-line in the event any maintenance is required. The Edward ACCEV is available in a commercial B16.34 version for general service and also in an ASME Section III N-Stamp version for nuclear applications.

Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

Actuators – Forged and Cast Steel

Flowserve Edward valves supply actuators for Edward forged and cast steel valves when alternate sources of power are required to open, close or maintain an intermediate position in the valve.

The most commonly used actuators are electric, pneumatic, hydraulic, manual gear or a stored energy gas hydraulic used in nuclear applications. Most Edward valves can be equipped with an actuator, if required. Where specific or special customer requirements are needed, Flowserve engineering and expertise with all types of actuators can be applied and adapted to meet the most rigid codes.

The following information on page 192 will allow Flowserve engineers to correctly size and select the proper motor actuator for your application.

Required Information for Motor Actuators

1. OPERATING PRESSURES:		
A) PRESSURE UNDER SEAT =	psig	
B) PRESSURE OVER SEAT =		
C) PRESSURE DIFFERENTIAL =	psig	
2. MOTOR POWER SUPPLY*:		
A) AC =V B) DC =V.	HZ PH	1
B) DC = V.		
*STANDARD VOLTAGE VARIANCE ± 10%, IF OTHERWISE, PLEASE INDICAT	E	
3. LIMIT SWITCH, TOTAL QUANTITY OF CONTACTS =		
4. DOUBLE TORQUE SWITCH IS STANDARD.		
5. CONTROL POWER SUPPLY TO SWITCH COMPARTMENT =		
6. CLOSING TIME:		
A) STANDARD (GLOBE VALVES APPROX. 4 IN./MIN.,	GATE VALVES APPROX. 12 IN./MIN. S	TEM SPEED.)
B) SPECIAL INDI		
	,	
7. OPTIONAL EQUIPMENT: (PLEASE INDICATE REQUIRED OPTIONS A) MECHANICAL DIAL POSITION INDICATOR)	
B) EXTRA TERMINALS		
C) REVERSING MOTOR CONTROLLER:	INTEGRAL OB	NON-INTEGRAL
D) PUSH-BUTTON STATION:		NON-INTEGRAL
E) POSITION TRANSMITTER, INDICATE TYPE		
F) POSITION RECEIVER		
H) OTHERS		
8. AMBIENT CONDITIONS:		
9. NEMA RATING: STANDARD IS NEMA 4 (WEATHERPROOF), IF OTHERWISE, PLEASE L		
10. STEM POSITION OF INSTALLED VALVE:		
A) VERTICAL UP-RIGHT		

Data in the Table above represents the minimum information that should be provided when ordering a valve equipped with a motor operator.

flowserve.com

Tables and Charts

Material Chemical Analysis (ASME or ASTM)

			PERCENTAGE*	
MATERIAL	ELEMENTS	CAST	FOR	GED
Carbon Steel (Body)	Carbon	0.30 max.		max.
Cast - ASME SA-216 Grade WCB	Manganese Phosphorus	1.00 max. 0.04 max.		o 1.05 max.
	Sulfur	0.045 max.		max.
Forged - ASME SA-105	Silicon	0.60 max.	0.10-0.3	35 max.
Carbon Steel (Body)	Carbon	0.25 max.		max.
Cast - ASME SA-216 Grade WCC	Manganese Phosphorus	1.20 max. 0.04 max.		o 1.05 max.
	Sulfur	0.045 max.		max.
	Silicon	0.60 max.	0.35	max.
2¼ Chromium-Molybdenum Steel (Body)	Carbon	0.015	0.05	-0.15
Cast - ASME SA-217 Grade WC9	Manganese	0.40 to 0.70		o 0.60
Cast - ASME 5A-217 Grade WC9	Phosphorus Sulfur	0.04 max. 0.045 max.		max. max.
Forged - ASME SA-182 Grade F22	Silicon	0.60 max.		max.
	Chromium	2.00 to 2.75	2.00 t	o 2.50
	Molybdenum	0.90 to 1.20		0 1.13
Austenitic Stainless Steel (Body)	Carbon Manganese	0.03 max. 1.50 max.		max. max.
Cast - ASME SA-351 Grade CF8M	Phosphorus	0.04 max.		max.
Forged - ASME SA-182 Grade F316	Nickel	9.00 to 13.00		o 14.00
Torged - ASME SA-102 Grade 1 510	Sulfur Silicon	0.04 max. 1.50 max.		max. max.
	Chromium	17.00 to 21.00		max. o 18.00
	Molybdenum	2.00 to 3.00	2.00 to 3.00	
Martensitic Stainless Steel (Stems)	Carbon	0.15 max.		max.
Bolted Bonnet T416	Manganese Phosphorus	1.00 max. 0.04 max.		max. max.
Cast Valves - ASME A-182 Grade F6a	Sulfur	0.03 max.	0.15 min.	
	Silicon	1.00 max.	1.00	max
Univalves - A-479 T-410 Cl 3	Nickel Chromium	0.50 max. 11.50 to 13.50	12 00 t	— o 14.00
	Molybdenum			max.
Aluminum Bronze (Yoke Bushings)			61900	62300
Cast Valves - ASTM B-148 Alloy 95400	Copper Aluminum	remainder 10.00 to 11.50	remainder 8.50 to 10.00	remainder 8.50 to 11.00
Forged Valves - ASTM B-150 Alloy 61900-62300	Iron	3.00 to 5.00	3.00 to 4.50	2.00 to 4.00
1 orgen valves - ASTIN D-150 Alloy 01900-02500	Tin	_	0.60 max.	0.60 max.
	Lead Manganese	0.50 max.	0.80 max.	— 0.50 max.
	Zinc		0.02 max.	
	Silicon	_	_	0.25 max.
	Nickel & Cobalt	1.50 max.		1.00 max.
Chromium-Molybenum (Bolting)	Carbon Manganese	0.37 to 0.49 0.95 to 1.10		max. .05 max.
ASME SA-193 Grade B7	Phosphorus	0.035 max		max.
Forged - ASME SA-105	Sulfur	0.04 max) max
	Silicon Chromium	0.15 to 0.35 0.75 to 1.20).35 min. max
	Molybdenum	.015 to 0.25		max.
Hard Surfacing for Seats and Discs	Chromium		25.00 to 29.00	
A732 Grade 21 & Stellite 21°	Manganese Molybdenum		1.00 max. 5.00 to 6.00	
	Nickel		1.75 to 3.75	
	Iron		3.00	
	Boron	1	.007 max.	
	Carbon		0.20 to 0.30	

This ASME/ASTM specification data is provided for customer information. The data was based on information available at time of printing and may not reflect the latest ASME/ASTM revision. Flowserve suggests referring to the applicable specification for complete information or contacting your Flowserve Valves sales representative.

*The equivalent Flowserve valve material specification for valve bodies meets the requirements of the referenced ASME Specification; additionally Flowserve restricts certain elements (i.e. carbon, manganese) to tighter allowable ranges to enhance weldability.

Forged Steel, Bolted Bonnet

		PRESSURE (PSIG)
VALVE TYPE	TEMPERATURE °F	SA105 (1)
	-20 to 100	1480
	200	1360
	300	1310
	400	1265
	500	1205
	600	1135
FLANGED END ONLY B16.34 STANDARD CLASS 600	650	1100
(2)	700	1060
(2)	750	1015
	800	825
	850	640
	900	460
	950	275
	1000	170

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

1. Permissible but not recommended for prolonged use at temperatures above approx. 800°F.

2. Shaded ratings exceed those of Edward Valves. Consult your Flowserve sales representative for applications in these ranges.

Forged Steel, Bolted Bonnet		1 bar = 100 kPa = 14.50 psi				
VALVE TYPE	TEMPERATURE °C	PRESSURE (BAR)				
VALVETITE		SA105 (1)				
	-29 to 38	102.1				
	50	100.2				
	100	93.2				
	150	90.2				
	200	87.6				
	250	83.9				
FLANGED END ONLY	300	79.6				
B16.34 STANDARD CLASS 600	325	77.4				
	350	75.1				
(2)	375	72.7				
	400	69.4				
	425	57.5				
	450	46.0				
	475	34.9				
	500	23.5				
	538	11.8				

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

1. Permissible but not recommended for prolonged use at temperatures above approx. 427°C.

2. Shaded ratings exceed those of Edward Valves. Consult your Flowserve sales representative for applications in these ranges.

Forged Steel Univalves

				PRESSU	RE (PSIG)		
		CLASS 1500	CLAS	S 1690	CLAS	S 1925	CLASS 2500
MATERIAL	TEMP (°F)	SIZES	SIZES	SIZES	SIZES	SIZES	SIZES
MATERIAL		½ to 2 ½	½ to 2 ½	3 & 4	½ to 2 ½	3 & 4	½ to 1
		(1)	(2)	(3)	(2)	(3)	(2)
		STANDARD	LIMITED	SPECIAL	LIMITED	SPECIAL	LIMITED
	-20 to 100	3705	4225	4225	4815	4815	6250
	200	3395	4225	4225	4815	4815	6250
	300	3270	4170	4170	4750	4750	6170
	400	3170	4130	4130	4700	4700	6105
	500	3015	4130	4130	4700	4700	6105
	600	2840	4130	4130	4700	4700	6105
SA105	650	2745	4030	4030	4590	4590	5960
(4) (6)	700	2685	3895	3895	4435	4435	5760
	750	2535	3570	3570	4070	4070	5285
	800	2055	2895	2895	3300	3300	4285
	850	1595	2245	2245	2560	2560	3320
	900	1150	1615	1615	1845	1845	2395
	950	685	990	965	1135	1100	1485
	1000	430	650	605	755	690	1000
	-20 to 100	3750	4225	4225	4815	4815	6250
	200	3750	4225	4225	4815	4815	6250
	300	3640	4165	4165	4745	4745	6160
	400	3530	4100	4100	4670	4670	6065
	500	3325	4080	4080	4645	4645	6035
	600	3025	4060	4060	4625	4625	6010
	650	2940	4035	4035	4595	4595	5965
	700	2840	3985	3985	4540	4540	5895
SA182 F22	750	2660	3985	3985	4540	4540	5895
(5) (6)	800	2540	3985	3985	4540	4540	5895
	850	2435	3815	3815	4345	4345	5645
	900	2245	3380	3380	3850	3850	5000
	950	1930	2725	2660	3120	3025	4075
	1000	1335	2040	1880	2350	2145	3120
	1050	875	1335	1235	1540	1405	—
	1100	550	835	770	965	880	—
	1150	345	525	485	605	550	—
	1200	205	315	290	360	330	—

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

NOTES: 1. Standard Class, Flanged Ends only.

2. Limited Class, Sizes 2 ½ and smaller, butt weld and socket weld ends.

Limited Class Threaded ends limited to Size 1 and smaller, 1000°F maximum and Class 2500 maximum.

3. Special Class, Sizes 3 and 4, Butt-weld ends only.

4. Permissible but not recommended for prolonged usage above approx. 800°F.

5. Permissible but not recommended for use above 1100°F.

6. Shaded ratings may require special trim and packing. Consult your Flowserve sales representative for applications in these ranges.

* Consult the applicable version of ASME section III for the correct version of ASME B16.34 to use.

Flowserve Edward and Anchor/Darling Valves • 1900 South Saunders Street, Raleigh, North Carolina 27603 • 1-800-225-6989 • 1-919-832-0525 • Fax 1-919-831-3369

<u>197</u>

Forged Steel Univalves

				PRESSU	RE (BAR)		
		CLASS 1500	CLAS	S 1690	CLASS	5 192 5	CLASS 2500
MATERIAL	TEMP (°C)	SIZES	SIZES	SIZES	SIZES	SIZES	SIZES
		½ to 2 ½	½ to 2 ½	3 & 4	½ to 2 ½	3 & 4	½ to 1
		(1)	(2)	(3)	(2)	(3)	(2)
		STANDARD	LIMITED	SPECIAL	LIMITED	SPECIAL	LIMITED
	-29 to 38	255.3	291.3	291.3	331.8	331.8	430.9
	50	250.6	291.3	291.3	331.8	331.8	430.9
	100	233.0	290.9	290.9	331.3	331.3	430.3
	150	225.4	287.5	287.5	327.5	327.5	425.3
	200	219.0	284.9	284.9	324.5	324.5	421.4
	250	209.7	284.6	284.6	324.2	324.2	421.1
04105	300	199.1	284.6	284.6	324.2	324.2	421.1
SA105	325	193.6	282.3	282.3	321.6	321.6	417.6
(4) (6)	350	187.8	275.6	275.6	313.9	313.9	407.6
	375 400 425	181.8	265.3	265.3	302.2	302.2	392.5
		173.6	244.5	244.5	278.5	278.5	361.7
	425	143.8	202.6	202.6	230.7	230.7	299.6
	450	115.0	162.0	162.0	184.5	184.5	239.6
	475	87.2	122.8	122.8	139.9	139.9	181.6
	500	58.8	84.3	82.8	96.2	94.3	125.4
	538	29.5	45.0	41.6	52.0	47.4	69.0
	-29 to 38	258.6	291.3	291.3	331.8	331.8	430.9
	50	258.6	291.3	291.3	331.8	331.8	430.9
	100	257.6	290.8	290.8	331.2	331.2	430.2
	150	250.8	287.1	287.1	327.0	327.0	424.6
	200	243.4	282.9	282.9	322.2	322.2	418.5
	250	231.8	281.6	281.6	320.7	320.7	416.5
	300	214.4	280.4	280.4	319.4	319.4	414.8
	325	206.6	279.4	279.4	318.3	318.3	413.3
	350	201.1	277.2	277.2	315.7	315.7	410.0
SA182 F22	375	194.1	274.7	274.7	312.9	312.9	406.3
(5) (6)	400	183.1	274.7	274.7	312.9	312.9	406.3
(3) (0)	425	175.1	274.7	274.7	312.9	312.9	406.3
	450	169.0	265.7	265.7	302.7	302.7	393.1
	475	158.2	240.8	240.8	274.3	274.3	356.3
	500	140.9	204.7	201.2	233.7	229.1	304.8
	538	92.2	140.6	129.8	162.2	147.9	215.2
	550	78.2	119.2	110.1	137.5	125.4	—
	575	52.6	80.3	74.1	92.7	84.5	—
	600	34.4	52.5	48.5	60.6	55.2	—
	625	22.3	34.0	31.4	39.3	35.8	—
	650	14.2	21.6	19.9	24.9	22.7	_

 IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

 NOTES:
 1. Standard Class, Flanged Ends only.

 2. Limited Class, Sizes 2 ½ and smaller, butt weld and socket weld ends.

 Limited Class, Threaded ends limited to Size 1 and smaller, 538°C maximum and Class 2500 maximum.

 3. Special Class, Sizes 3 and 4, Butt-weld ends only.

 4. Derroticible but start present for the present of for some operation.

A. Permissible but not recommended for prolonged usage above approx. 425°C.
 A. Permissible but not recommended for use above 595°C.
 B. Shaded ratings may require special trim and packing. Consult your Flowserve sales representative for applications in these ranges.
 * Consult the applicable version of ASME section III for the correct version of ASME B16.34 to use.

<u> 198</u>

Forged Steel Univalves®

				PRESSUI	RE (PSIG)		
		CLASS 1500	CLAS	S 1690	CLASS	S 1925	CLASS 2500
MATERIAL	ТЕМР	SIZES	SIZES	SIZES	SIZES	SIZES	SIZES
	(°F)	½ to 2 ½	½ to 2 ½	3 & 4	½ to 2 ½	3 & 4	½ to 1
		(1)	(2)	(3)	(2)	(3)	(2)
		STANDARD	LIMITED	SPECIAL	LIMITED	SPECIAL	LIMITED
	-20 to 100	3600	4225	4225	4815	4815	6250
	200	3095	3895	3895	4435	4435	5760
	300	2795	3515	3515	4005	4005	5200
	400	2570	3230	3230	3675	3675	4775
	500	2390	3000	3000	3420	3420	4440
	600	2255	2840	2840	3230	3230	4195
	650	2210	2775	2775	3160	3160	4105
	700	2170	2730	2730	3110	3110	4040
	750	2135	2685	2685	3060	3060	3975
	800	2110	2655	2655	3025	3025	3930
	850	2090	2625	2625	2990	2990	3885
SA182 F316 (4)	900	2075	2610	2610 2970		2970	3860
SA102 F310 (4)	950	1930	2580	2580	2940	2940	3815
	1000	1820	2370	2370	2700	2700	3505
	1050	1800	2370	2370	2700	2700	—
	1100	1525	2200	2145	2520	2445	—
Γ	1150	1185	1805	1665	2080	1900	—
	1200	925	1410	1300	1630	1485	—
	1250	735	1125	1035	1295	1180	—
	1300	585	890	820	1025	935	
	1350	480	730	675	845	770	—
	1400	380	570	530	660	605	_
	1450	290	445	410	515	465	_
	1500	205	320	290	365	330	_

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

NOTES: 1. Standard Class, Flanged Ends only.

2. Limited Class, Sizes 2 1/2 and smaller, butt weld and socket weld ends.

Limited Class Threaded ends limited to Size 1 and smaller, 1000°F maximum and Class 2500 maximum.

3. Special Class, Sizes 3 and 4, Butt-weld ends only.

4. Shaded ratings may require special trim and packing. Consult your Flowserve sales representative for applications in these ranges.

Forged Steel Univalves®

				PRESSU	RE (BAR)		
		CLASS 1500	CLAS	S 1690	CLAS	S 1925	CLASS 2500
MATERIAL	ТЕМР	SIZES	SIZES	SIZES	SIZES	SIZES	SIZES
MATCHIAL	(°C)	½ to 2 ½	½ to 2 ½	3 & 4	½ to 2 ½	3 & 4	½ to 1
		(1)	(2)	(3)	(2)	(3)	(2)
		STANDARD	LIMITED	SPECIAL	LIMITED	SPECIAL	LIMITED
	-29 to 38	248.2	291.3	291.3	331.8	331.8	430.9
	50	240.6	286.3	286.3	326.1	326.1	423.5
	100	211.0	265.3	265.3	302.2	302.2	392.4
	150	192.5	242.0	242.0	275.7	275.7	358.0
	200	178.3	224.2	224.2	255.4	255.4	331.7
	250	166.9	209.9	209.9	239.0	239.0	310.4
	300	158.1	198.8	198.8	226.4	226.4	294.1
	325	154.4	194.1	194.1	221.1	221.1	287.2
	350	151.6	190.7	190.7	217.2	217.2	282.1
	375	149.4	187.8	187.8	214.0	214.0	277.9
	400	147.2	185.1	185.1	210.8	210.8	273.8
	425	145.7	183.2	183.2	208.7	208.7	271.1
SA182	450	144.2	181.4	181.4	206.6	206.6	268.3
5A162 F316	475	143.4	180.3	180.3	205.3	205.3	266.6
(4)	500	140.9	178.7	178.7	203.5	203.5	264.3
(4)	538	125.5	163.5	163.5	186.2	186.2	241.7
	550	124.9	163.5	163.5	186.2	186.2	
	575	119.7	162.5	161.1	185.3	183.5	—
	600	99.5	145.3	140.2	166.5	159.6	—
	625	79.1	120.6	111.3	139.1	126.8	—
	650	63.3	96.5	89.1	111.4	101.5	_
	675	51.6	78.7	72.7	90.8	82.8	
	700	41.9	69.7	64.3	80.4	73.3	—
	725	34.9	58.2	53.7	67.2	61.2	—
	750	29.3	44.8	41.4	51.7	47.1	
	775	22.8	34.8	32.1	40.2	36.6	—
	800	17.4	26.8	24.8	30.9	28.2	
	816	14.1	21.8	20.1	25.1	22.9	

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings. NOTES:

1. Standard Class, Flanged Ends only.

2. Limited Class, Sizes 2 1/2 and smaller, butt weld and socket weld ends.

Limited Class Threaded ends limited to Size 1 and smaller, 538°C maximum and Class 2500 maximum.

3. Special Class, Sizes 3 and 4, Butt-weld ends only.

4. Shaded ratings may require special trim and packing. Consult your Flowserve sales representative for applications in these ranges.

				,		PRESSU	RE (PSIG)				
KATING	TEMP. °F	300	400	600	700	900	1100	1500	1800	2000	2500
	-20 to 100	740	985	1480	1725	2220	2715	3705	4445	4940	6170
SA216-WCB STANDARD CLASS (1) (2)	200	680	905	1360	1585	2035	2490	3395	4075	4525	5655
	300	655	875	1310	1530	1965	2400	3270	3925	4360	5450
	400	635	845	1265	1475	1900	2325	3170	3805	4225	5280
	500	605	805	1205	1405	1810	2210	3015	3620	4020	5025
SA216-WCB	600	570	760	1135	1325	1705	2085	2840	3405	3785	4730
STANDARD	650	550	735	1100	1285	1650	2015	2745	3295	3660	4575
	700	530	705	1060	1235	1590	1950	2665	3195	3545	4425
(1) (2)	750	505	675	1015	1185	1520	1860	2535	3045	3385	4230
	800	410	550	825	960	1235	1510	2055	2470	2745	3430
	850	320	425	640	745	955	1170	1595	1915	2125	2655
-	900	230	305	460	535	690	845	1150	1380	1535	1915
	950	135	180	275	320	410	500	685	825	915	1145
	1000	85	115	170	200	255	315	430	515	575	715
	-20 to 100	750	1000	1500	1750	2250	2750	3750	4500	5000	6250
	200	750	1000	1500	1750	2250	2750	3750	4500	5000	6250
	300	740	985	1480	1725	2220	2715	3700	4440	4935	6170
	400	735	980	1465	1710	2200	2690	3665	4395	4885	6105
	500	735	980	1465	1710	2200	2690	3665	4395	4885	6105
SA216-WCB	600	735	980	1465	1710	2200	2690	3665	4395	4885	6105
SPECIAL	650	715	955	1430	1670	2145	2620	3575	4290	4770	5960
	700	690	920	1380	1610	2075	2535	3455	4145	4610	5760
(1) (2)	750	635	845	1270	1480	1905	2325	3170	3805	4230	5285
	800	515	685	1030	1200	1545	1885	2570	3085	3430	4285
	850	400	530	795	930	1195	1460	1995	2395	2660	3320
	900	285	380	575	670	860	1050	1435	1725	1915	2395
	950	170	230	345	400	515	630	855	1030	1145	1430
	1000	105	140	215	250	320	390	535	645	715	895

Cast Steel⁺ (Gate, Globe & Check Valves)

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

Note: Flanged End Valve ratings are limited to standard class only.

1. Permissible but not recommended for prolonged use at temperatures above approx. 800°F.

2. Shaded ratings exceed those of standard Flowserve Valves. Consult your Flowserve sales representative for applications in these ranges.

+ Pressure temperature ratings are from ASME B16.34 "Valves, Flanged, Threaded and Welding Ends." Consult your Flowserve sales representative for pressure temperature ratings of materials not included in this catalog.

B I TUI O				,		PRESSU	RE (BAR)				
RATING	TEMP. °C	300	400	600	700	900	1100	1500	1800	2000	2500
	-29 to 38	51.1	68.1	102.1	119.1	153.2	187.2	255.3	306.4	340.4	425.5
	50	50.1	66.8	100.2	116.9	150.4	183.8	250.6	300.7	334.2	417.7
	100	46.6	62.1	93.2	108.7	139.8	170.9	233.0	279.6	310.7	388.3
	150	45.1	60.1	90.2	105.2	135.2	165.3	225.4	270.5	300.5	375.6
	200	43.8	58.4	87.6	102.2	131.4	160.6	219.0	262.8	292.0	365.0
	250	41.9	55.9	83.9	97.9	125.8	153.8	209.7	251.6	279.6	349.5
SA216-WCB	300	39.8	53.1	79.6	92.9	119.5	146.0	199.1	238.9	265.5	331.8
STANDARD	325	38.7	51.6	77.4	90.3	116.1	141.9	193.6	232.3	258.1	322.6
CLASS	350	37.6	50.1	75.1	87.6	112.7	137.7	187.8	225.4	250.4	313.0
(1) (2)	375	36.4	48.5	72.7	84.8	109.1	133.3	181.8	218.2	242.5	303.1
	400	34.7	46.3	69.4	81.0	104.2	127.3	173.6	208.3	231.5	289.3
	425	28.8	38.4	57.5	67.1	86.3	105.5	143.8	172.6	191.8	239.7
	450	23.0	30.7	46.0	53.7	69.0	84.3	115.0	138.0	153.4	191.7
-	475	17.4	23.2	34.9	40.7	52.3	63.9	87.2	104.6	116.3	145.3
	500	11.8	15.7	23.5	27.4	35.3	43.1	58.8	70.5	78.4	97.9
	538	5.9	7.9	11.8	13.8	17.7	21.6	29.5	35.4	39.4	49.2
	-29 to 38	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9
	50	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9
	100	51.6	68.8	103.3	120.5	154.9	189.3	258.2	309.8	344.3	430.3
	150	51.0	68.0	102.1	119.1	153.1	187.1	255.2	306.2	340.3	425.3
	200	50.6	67.4	101.1	118.0	151.7	185.4	252.9	303.5	337.2	421.4
	250	50.5	67.4	101.1	117.9	151.6	185.3	252.6	303.2	336.9	421.1
SA216-WCB	300	50.5	67.4	101.1	117.9	151.6	185.3	252.6	303.2	336.9	421.1
SPECIAL	325	50.1	66.8	100.2	116.9	150.3	183.7	250.6	300.7	334.1	417.6
CLASS	350	48.9	65.2	97.8	114.1	146.7	179.3	244.6	293.5	326.1	407.6
(1) (2)	375	47.1	62.8	94.2	109.9	141.3	172.7	235.5	282.6	314.0	392.5
	400	43.4	57.9	86.8	101.3	130.2	159.1	217.0	260.4	289.4	361.7
	425	36.0	48.0	71.9	83.9	107.9	131.9	179.8	215.7	239.7	299.6
	450	28.8	38.4	57.5	67.1	86.3	105.5	143.8	172.5	191.7	239.6
	475	21.8	29.1	43.6	50.9	65.4	79.9	109.0	130.8	145.3	181.6
	500	14.7	19.6	29.4	34.3	44.1	53.9	73.5	88.2	98.0	122.4
	538	7.4	9.9	14.8	17.3	22.2	27.1	36.9	44.3	49.3	61.6

Cast Steel⁺ (Gate, Globe & Check Valves)

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

1. Permissible but not recommended for prolonged use at temperatures above approx. 427°C.

2. Shaded ratings exceed those of standard Edward Valves. Consult your Flowserve sales representative for applications in these ranges.

+ Pressure temperature ratings are from ASME B16.34 "Valves, Flanged, Threaded and Welding Ends." Consult your Flowserve sales representative for pressure temperature ratings of materials not included in this catalog.

DATINO			UNUUR I	,		PRESSU	RE (PSIG)				
KATING	TEMP. °F	300	400	600	700	900	1100	1500	1800	2000	2500
	100	750	1,000	1,500	1,750	2,250	2,750	3,750	4,500	5,000	6,250
RATING SA216-WCC GROUP 1.2 STANDARD CLASS (1) (2) SA216-WCC GROUP 1.2 SPECIAL CLASS (1) (2)	200	750	1,000	1,500	1,750	2,250	2,750	3,750	4,500	5,000	6,250
	300	730	970	1,455	1,700	2,185	2,670	3,640	4,370	4,855	6,070
	400	705	940	1,405	1,640	2,110	2,580	3,520	4,225	4,695	5,865
	500	665	890	1,330	1,550	1,995	2,440	3,325	3,990	4,435	5,540
	600	605	810	1,210	1,410	1,815	2,220	3,025	3,630	4,035	5,040
	650	590	785	1,175	1,370	1,765	2,160	2,940	3,530	3,925	4,905
	700	555	740	1,110	1,295	1,665	2,035	2,775	3,330	3,705	4,630
	750	505	675	1,015	1,180	1,520	1,860	2,535	3,045	3,385	4,230
	800	410	550	825	960	1,235	1,510	2,055	2,470	2,745	3,430
	850	320	430	640	745	955	1,170	1,595	1,915	2,125	2,655
	900	225	300	445	520	670	820	1,115	1,340	1,485	1,855
	950	135	180	275	320	410	500	685	825	915	1,145
	1000	85	115	170	200	255	315	430	515	575	715
	100	750	1,000	1,500	1,750	2,250	2,750	3,750	4,500	5,000	6,250
	200	750	1,000	1,500	1,750	2,250	2,750	3,750	4,500	5,000	6,250
	300	750	1,000	1,500	1,750	2,250	2,750	3,750	4,500	5,000	6,250
	400	750	1,000	1,500	1,750	2,250	2,750	3,750	4,500	5,000	6,250
	500	750	1,000	1,500	1,750	2,250	2,750	3,750	4,500	5,000	6,250
	600	750	1,000	1,500	1,750	2,250	2,750	3,750	4,500	5,000	6,250
	650	750	1,000	1,500	1,750	2,250	2,750	3,750	4,500	5,000	6,250
	700	715	950	1,425	1,660	2,140	2,615	3,565	4,280	4,755	5,940
	750	635	850	1,270	1,480	1,905	2,330	3,170	3,805	4,230	5,285
	800	515	690	1,030	1,200	1,545	1,890	2,570	3,085	3,430	4,285
	850	400	530	795	930	1,195	1,460	1,995	2,395	2,660	3,320
	900	280	370	555	650	835	1,020	1,395	1,675	1,860	2,320
	950	170	230	345	400	515	630	855	1,030	1,140	1,430
	1000	105	140	215	250	320	390	535	645	715	895

Cast Steel⁺ (Gate, Globe & Check Valves)

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

Note: Flanged End Valve ratings are limited to standard class only and terminate at 1000°F.

1. Permissible but not recommended for prolonged use at temperatures above approx. 800°F.

2. Shaded ratings may require special trim and packing. Consult your Flowserve sales representative for applications in these ranges.

+ Pressure temperature ratings are from ASME B16.34 "Valves, Flanged, Threaded and Welding Ends." Consult your Flowserve sales representative for pressure temperature ratings of materials not included in this catalog.

Cast Steel⁺ (Gate, Globe & Check Valves)

1 bar = 100 kPa = 14.50 psi

			PRESSURE (BAR)										
RATING	TEMP. °C	300	400	600	700	900	1100	1500	1800	2000	2500		
	38	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9		
	50	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9		
	100	51.5	68.7	103.0	120.2	154.6	188.9	257.6	309.1	343.5	429.4		
	150	50.2	66.9	100.3	117.0	150.5	183.9	250.8	301.0	334.5	418.1		
	200	48.6	64.8	97.2	113.4	145.8	178.3	243.2	291.9	324.3	405.4		
	250	46.3	61.6	92.2	107.8	139.0	169.9	231.8	278.1	309.0	386.2		
SA216-WCC	300	42.9	57.2	85.7	100.0	128.6	157.2	214.4	257.2	285.8	357.1		
GROUP 1.2	325	41.4	55.1	82.6	96.4	124.0	151.5	206.6	247.9	275.5	344.3		
STANDARD CLASS	350	40.0	53.3	80.0	93.4	120.1	146.8	200.1	240.1	266.8	333.5		
(1) (2)	375	37.8	50.4	75.7	88.3	113.5	138.7	189.2	227.0	252.3	315.3		
	400	34.7	46.3	69.4	81.0	104.2	127.3	173.6	208.3	231.5	289.3		
	425	28.8	38.4	57.5	67.1	86.3	105.5	143.8	172.6	191.8	239.7		
	450	23.0	30.7	46.0	53.7	69.0	84.3	115.0	138.0	153.4	191.7		
	475	17.1	22.8	34.2	39.9	51.3	62.7	85.4	102.5	113.9	142.4		
	500	11.6	15.5	23.2	27.0	34.7	42.4	57.9	69.5	77.2	96.5		
	538	5.9	7.9	11.8	13.8	17.7	21.6	29.5	35.4	39.4	49.2		
	38	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9		
	50	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9		
	100	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9		
	150	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9		
	200	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9		
	250	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9		
SA216-WCC	300	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9		
GROUP 1.2	325	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9		
SPECIAL CLASS	350	51.1	68.1	102.2	119.2	153.3	187.4	255.5	306.6	340.7	425.8		
(1) (2)	375	48.4	64.5	96.7	112.8	145.1	177.4	241.9	290.3	322.5	403.1		
	400	43.4	57.9	86.8	101.3	130.2	159.1	217.0	260.4	289.4	361.7		
	425	36.0	48.0	71.9	83.9	107.9	131.9	179.8	215.7	239.7	299.6		
	450	28.8	38.4	57.5	67.1	86.3	105.5	143.8	172.5	191.7	239.6		
	475	24.4	30.5	42.7	49.8	64.1	78.3	106.8	128.2	142.4	178.0		
	500	14.5	19.3	29.0	33.8	43.4	53.1	72.4	86.9	96.6	120.7		
	538	7.4	9.9	14.8	17.3	22.2	27.1	36.9	44.3	49.3	61.6		

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

1. Permissible but not recommended for prolonged use at temperatures above approx. 427°C.

2. Shaded ratings may require special trim and packing. Consult your Flowserve sales representative for applications in these ranges.

+ Pressure temperature ratings are from ASME B16.34 "Valves, Flanged, Threaded and Welding Ends." Consult your Flowserve sales representative for pressure temperature ratings of materials not included in this catalog.

	i (uuto,		Chicon V	,		PRESSU	RE (PSIG)				
RATING	TEMP. °F	300	400	600	700	900	1100	1500	1800	2000	2500
	-20 to 100	750	1000	1500	1750	2250	2750	3750	4500	5000	6250
	200	750	1000	1500	1750	2250	2750	3750	4500	5000	6250
	300	730	970	1455	1700	2185	2670	3640	4370	4855	6070
	400	705	940	1410	1645	2115	2585	3530	4235	4705	5880
	500	665	885	1330	1550	1995	2440	3325	3990	4435	5540
	600	605	805	1210	1410	1815	2220	3025	3630	4035	5040
	650	590	785	1175	1370	1765	2155	2940	3530	3925	4905
SA217-WC9	700	570	760	1135	1325	1705	2085	2840	3405	3785	4730
STANDARD CLASS	750	530	710	1065	1240	1595	1950	2660	3190	3545	4430
OLNOO	800	510	680	1015	1185	1525	1865	2540	3045	3385	4230
	850	485	650	975	1135	1460	1785	2435	2925	3250	4060
	900	450	600	900	1050	1350	1650	2245	2695	2995	3745
	950	385	510	755	890	1160	1415	1930	2315	2575	3220
-	1000	265	355	535	625	800	980	1335	1605	1785	2230
	1050	175	235	350	410	525	640	875	1050	1165	1455
	1100	110	145	220	255	330	405	550	660	735	915
	-20 to 100	750	1000	1500	1750	2250	2750	3750	4500	5000	6250
	200	750	1000	1500	1750	2250	2750	3750	4500	5000	6250
	300	740	985	1480	1725	2220	2710	3695	4435	4930	6160
	400	730	970	1455	1700	2185	2670	3640	4370	4855	6065
	500	725	965	1450	1690	2175	2655	3620	4345	4830	6035
	600	720	960	1440	1680	2165	2645	3605	4325	4810	6010
0.0.47 1000	650	715	955	1430	1670	2145	2625	3580	4295	4775	5965
SA217-WC9	700	705	940	1415	1650	2120	2590	3535	4245	4715	5895
SPECIAL CLASS	750	705	940	1415	1650	2120	2590	3535	4245	4715	5895
	800	705	940	1415	1650	2120	2590	3535	4245	4715	5895
	850	680	905	1355	1580	2030	2480	3385	4065	4515	5645
	900	600	800	1200	1400	1800	2200	3000	3600	4000	5000
	950	470	630	945	1100	1415	1730	2360	2830	3145	3930
	1000	335	445	670	780	1005	1225	1670	2005	2230	2785
	1050	220	290	435	510	655	800	1095	1315	1460	1820
	1100	135	180	275	320	410	500	685	825	915	1145

Cast Steel⁺ (Gate, Globe & Check Valves)

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

+ Pressure temperature ratings are from ASME B16.34 "Valves, Flanged, Threaded and Welding Ends." Consult your Flowserve sales representative for pressure temperature ratings of materials not included in this catalog.

Cast Steel	+ (Gate,	Globe & Check Valves) 1 bar = 100 kPa = 14.50									4.50 p
RATING	TEMP 00	PRESSURE (BAR)									
	TEMP. °C	300	400	600	700	900	1100	1500	1800	2000	2500
	-29 to 38	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9
	50	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9
	100	51.5	68.7	103.0	120.2	154.6	188.9	257.6	309.1	343.5	429.4
	150	50.3	67.0	100.3	117.1	150.6	184.0	250.8	301.0	334.5	418.2
	200	48.6	64.8	97.2	113.4	145.8	178.3	243.4	292.0	324.4	405.4
	250	46.3	61.8	92.7	108.1	139.0	169.9	231.8	278.1	309.0	386.2
	300	42.9	57.2	85.7	100.0	128.6	157.2	214.4	257.2	285.8	357.1
	325	41.4	55.1	82.6	96.4	124.0	151.5	206.6	247.9	275.5	344.3
SA-217-WC9	350	40.3	53.7	80.4	93.8	120.7	147.5	201.1	241.4	268.2	335.3
STANDARD CLASS	375	38.9	51.8	77.6	90.6	116.5	142.4	194.1	232.8	258.7	323.2
(1)	400	36.5	48.8	73.3	85.5	109.8	134.2	183.1	219.6	244.0	304.9
(1)	425	35.2	46.8	70.0	81.7	105.1	128.4	175.1	210.1	233.4	291.6
	450	33.7	45.0	67.7	78.9	101.4	123.9	169.0	202.8	225.4	281.8
	475	31.7	42.3	63.4	74.0	95.1	116.1	158.2	189.9	211.1	263.9
	500	28.2	37.6	56.5	65.9	84.7	103.4	140.9	169.1	188.0	235.0
	538	18.4	24.6	36.9	43.0	55.3	67.6	92.2	110.7	123.0	153.7
	550	15.6	20.8	31.3	36.5	46.9	57.3	78.2	93.8	104.3	130.3
	575	10.5	14.0	21.1	24.6	31.6	38.6	52.6	63.1	70.2	87.7
	595	7.6	10.2	15.3	17.8	22.9	27.9	38.0	45.7	50.8	63.5
	-29 to 38	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9
	50	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9
	100	51.6	68.8	103.2	120.4	154.9	189.3	258.1	309.7	344.2	430.2
	150	51.0	68.0	101.9	118.9	152.9	186.9	254.8	305.7	339.7	424.6
	200	50.2	66.9	100.4	117.2	150.7	184.2	251.1	301.3	334.8	418.5
	250	50.0	66.7	100.0	116.6	149.9	183.2	249.9	299.9	333.2	416.5
	300	49.8	66.4	99.6	116.2	149.3	182.5	248.9	298.7	331.9	414.8
	325	49.6	66.1	99.2	115.7	148.8	181.9	248.0	297.6	330.7	413.3
SA-217-WC9	350	49.2	65.6	98.4	114.8	147.6	180.4	246.0	295.2	328.0	410.0
SPECIAL CLASS	375	48.8	65.0	97.5	113.8	146.3	178.8	243.8	292.6	325.1	406.3
	400	48.8	65.0	97.5	113.8	146.3	178.8	243.8	292.6	325.1	406.3
(1)	425	48.8	65.0	97.5	113.8	146.3	178.8	243.8	292.6	325.1	406.
	450	47.3	63.0	94.4	110.1	141.4	172.9	235.8	283.0	314.5	393.1
	475	42.8	57.0	85.5	99.7	128.2	156.7	213.7	256.5	285.0	356.3
	500	35.6	47.6	71.5	83.4	107.1	130.9	178.6	214.3	238.1	297.5
	538	23.0	30.7	46.1	53.8	69.1	84.5	115.2	138.3	153.7	192.1
	550	19.5	26.0	39.1	45.6	58.6	71.6	97.7	117.2	130.3	162.8
	575	13.2	17.6	26.3	30.7	39.5	48.3	65.8	79.0	87.8	109.7
	595	9.5	12.7	19.0	22.2	28.5	34.9	47.6	57.1	63.4	79.3

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

1. Shaded ratings may require special trim and packing. Consult your Flowserve sales representative for applications in these ranges.

+ Pressure temperature ratings are from ASME B16.34 "Valves, Flanged, Threaded and Welding Ends." Consult your Flowserve sales representative for

pressure temperature ratings of materials not included in this catalog. * Consult the applicable version of ASME section III for the correct version of ASME B16.34 to use.

Cast Steel* (Gate, Globe & Check Valves)

RATING	TEMP. °F	PRESSURE (PSIG)									
		300	400	600	700	900	1100	1500	1800	2000	2500
	-20 to 100	720	960	1440	1680	2160	2640	3600	4320	4800	6000
	200	620	825	1240	1445	1860	2270	3095	3715	4130	5160
	300	560	745	1120	1305	1680	2050	2795	3355	3730	4660
	400	515	685	1025	1195	1540	1885	2570	3085	3425	4280
	500	480	640	955	1115	1435	1755	2390	2865	3185	3980
	600	450	600	900	1050	1355	1655	2255	2705	3010	3760
	650	440	590	885	1030	1325	1620	2210	2650	2945	3680
	700	435	580	870	1015	1305	1595	2170	2605	2895	3620
	750	425	570	855	995	1280	1565	2135	2565	2850	3560
	800	420	560	845	985	1265	1545	2110	2535	2815	3520
SA351-CF8M	850	420	560	835	975	1255	1535	2090	2505	2785	3480
STANDARD	900	415	555	830	970	1245	1520	2075	2490	2770	3460
CLASS	950	385	515	775	905	1160	1415	1930	2315	2575	3220
(1)	1000	365	485	725	845	1090	1335	1820	2185	2425	3030
	1050	360	480	720	840	1080	1320	1800	2160	2400	3000
	1100	305	405	610	710	915	1120	1525	1830	2035	2545
	1150	235	315	475	555	710	870	1185	1420	1580	1970
	1200	185	245	370	430	555	680	925	1110	1235	1545
	1250	145	195	295	345	440	540	735	885	985	1230
	1300	115	155	235	275	350	430	585	700	780	970
	1350	95	125	190	225	290	355	480	575	640	800
	1400	75	100	150	175	225	275	380	455	505	630
	1450	60	80	115	135	175	215	290	350	390	485
	1500	40	55	85	100	125	150	205	245	275	345

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

1. Shaded ratings may require special trim and packing, consult your Flowserve representative for applications in these ranges.

+ Pressure temperature ratings are from ASME B16.34 "Valves, Flanged, Threaded and Welding Ends." Consult your Flowserve sales representative for pressure temperature ratings of materials not included in this catalog.

PRESSURE (PSIG) RATING TEMP. °F -20 to 100 SA351-CF8M SPECIAL CLASS (1)

Cast Steel⁺ (Gate, Globe & Check Valves)

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

1. Shaded ratings may require special trim and packing, consult your Flowserve representative for applications in these ranges.

+ Pressure temperature ratings are from ASME B16.34 "Valves, Flanged, Threaded and Welding Ends." Consult your Flowserve sales representative for pressure temperature ratings of materials not included in this catalog.

2500

413.7

400.9

351.6

320.8

297.2

278.1

263.5

257.4

252.7

249.0

245.3

242.9

240.4

238.9

235.0

208.9

208.0

199.5

165.9

131.8

105.5

86.0

69.8

58.2

48.9

38.0

29.2

23.8

14.1

17.0

19.0

Reference: ASME B16.34 – 2004 Pressure/Temperature Ratings (metric)*

PRESSURE (BAR) RATING TEMP. °C 300 400 600 700 900 1100 1500 1800 2000 49.6 297.9 -29 to 38 66.2 99.3 115.8 148.9 182.0 248.2 331.0 176.4 288.7 320.8 50 48.1 64.1 96.2 112.2 144.3 240.6 100 42.2 56.3 84.4 98.5 126.6 154.7 211.0 253.2 281.3 150 38.5 51.3 77.0 89.8 115.5 141.2 192.5 231.0 256.7 200 35.7 47.6 71.3 107.0 130.8 178.3 214.0 237.8 83.2 250 33.4 44.5 66.8 77.9 100.1 122.4 166.9 200.3 222.5 116.0 300 31.6 42.1 63.2 73.8 94.9 158.1 189.7 210.8 325 30.9 41.2 61.8 72.1 92.7 113.3 154.4 185.3 205.9 30.3 40.4 60.7 111.2 181.9 350 70.8 91.0 151.6 202.2 375 29.9 39.9 59.8 69.7 89.6 109.5 149.4 179.3 199.2 400 29.4 39.2 58.9 68.7 88.3 107.9 147.2 176.6 196.3 106.8 174.9 425 29.1 38.8 58.3 68.0 87.4 145.7 194.3 450 28.8 38.4 57.7 67.3 86.5 105.7 144.2 173.1 192.3 SA351-CF8M 86.0 28.7 105.1 143.4 172.1 191.2 **STANDARD** 475 38.2 57.3 66.9 CLASS 500 28.2 37.6 56.5 65.9 84.7 103.4 140.9 169.1 188.0 (1) 150.5 538 25.2 33.5 50.0 58.4 75.2 92.0 125.5 167.2 550 25.0 33.3 49.8 58.1 74.8 91.5 124.9 149.8 166.5 575 24.0 32.0 47.9 55.9 71.8 87.8 119.7 143.6 159.6 600 19.9 26.5 39.8 46.4 59.7 73.0 99.5 119.4 132.7 21.1 31.6 625 15.8 36.9 47.4 58.0 79.1 94.9 105.5 650 12.7 16.9 25.3 29.5 38.0 46.4 63.3 76.0 84.4 10.3 13.7 20.6 61.9 675 24.1 31.0 37.9 51.6 68.8 700 8.4 11.2 25.1 30.7 41.9 50.3 55.9 16.8 19.6 725 7.0 9.3 14.0 16.3 21.0 25.6 34.9 41.9 46.6 750 5.9 7.8 11.7 13.7 17.6 21.5 29.3 35.2 39.1 775 4.6 6.1 9.0 10.6 13.7 16.7 22.8 27.4 30.4 800 3.5 4.7 7.0 8.2 10.5 12.8 17.4 20.9 23.3

Cast Steel⁺ (*Gate, Globe & Check Valves*)

1 bar = 100 kPa = 14.50 psi

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

1. Shaded ratings may require special trim and packing, consult your Flowserve representative for applications in these ranges.

5.9

+ Pressure temperature ratings are from ASME B16.34 "Valves, Flanged, Threaded and Welding Ends." Consult your Flowserve sales representative for pressure temperature ratings of materials not included in this catalog.

6.8

8.6

10.4

* Consult the applicable version of ASME section III for the correct version of ASME B16.34 to use.

3.8

816

2.8

Cast Steel⁺ (Gate, Globe & Check Valves)

1 bar = 100 kPa = 14.50 psi

RATING	TEMP. °C	PRESSURE (BAR)									
		300	400	600	700	900	1100	1500	1800	2000	2500
	-29 to 38	51.7	68.9	103.4	120.6	155.1	189.6	258.6	310.3	344.8	430.9
	50	50.8	67.7	101.6	118.6	152.5	186.4	254.1	304.9	338.8	423.5
	100	47.1	62.8	94.2	109.9	141.3	172.7	235.5	282.6	314.0	392.4
	150	43.0	57.3	85.9	100.2	128.9	157.5	214.8	257.8	286.4	358.0
	200	39.8	53.1	79.6	92.9	119.4	145.9	199.0	238.8	265.4	331.7
	250	37.3	49.7	74.5	86.9	111.8	136.6	186.3	223.5	248.4	310.4
	300	35.3	47.1	70.6	82.4	105.9	129.4	176.4	211.7	235.3	294.1
	325	34.5	46.0	68.9	80.4	103.4	126.4	172.3	206.8	229.8	287.2
	350	33.8	45.1	67.7	79.0	101.5	124.1	169.2	203.1	225.7	282.1
	375	33.3	44.4	66.7	77.8	100.0	122.2	166.7	200.1	222.3	277.9
	400	32.9	43.8	65.7	76.7	98.6	120.5	164.3	197.2	219.1	273.8
	425	32.5	43.4	65.1	75.9	97.6	119.3	162.6	195.2	216.9	271.1
SA351-CF8M	450	32.2	42.9	64.4	75.1	96.6	118.1	161.0	193.2	214.7	268.3
SPECIAL	475	32.0	42.7	64.0	74.7	96.0	117.3	160.0	192.0	213.3	266.6
CLASS	500	31.7	42.3	63.4	74.0	95.1	116.3	158.6	190.3	211.5	264.3
(1)	538	29.0	38.6	57.9	67.6	86.9	106.3	145.1	174.1	193.4	241.7
	550	29.0	38.6	57.9	67.6	86.9	106.3	145.1	174.1	193.4	241.7
	575	28.6	38.1	57.1	66.6	85.7	104.8	143.0	171.6	190.7	238.3
	600	24.9	33.2	49.8	58.1	74.6	91.2	124.4	149.3	165.9	207.3
	625	19.8	26.4	39.5	46.1	59.3	72.5	98.8	118.6	131.8	164.7
	650	15.8	21.1	31.7	37.0	47.5	58.0	79.1	94.9	105.5	131.9
	675	12.9	17.2	25.8	30.1	38.7	47.3	64.5	77.4	86.0	107.5
	700	11.4	15.2	22.8	26.6	34.3	41.9	57.1	68.5	76.2	95.2
	725	9.5	12.7	19.1	22.3	28.6	35.0	47.7	57.2	63.6	79.5
	750	7.4	9.9	14.8	17.2	22.1	27.0	36.7	44.1	49.0	61.2
	775	5.8	7.7	11.4	13.3	17.2	21.0	28.5	34.2	38.1	47.6
	800	4.4	5.9	8.8	10.3	13.2	16.1	22.0	26.4	29.3	36.6
	816	3.4	4.7	7.2	8.4	10.7	13.1	17.9	21.4	23.8	29.6

IMPORTANT: The above ratings are only for reference. Refer to ASME B16.34 for pressure/temperature ratings.

1. Shaded ratings may require special trim and packing, consult your Flowserve representative for applications in these ranges.

+ Pressure temperature ratings are from ASME B16.34 "Valves, Flanged, Threaded and Welding Ends." Consult your Flowserve sales representative for

pressure temperature ratings of materials not included in this catalog.

flowserve.com

Technical

1. Stop and Check-Valve Applications Guide

1.1 Stop Valve Applications

Foreword

Edward stop valves are used primarily as isolation valves in medium and high-pressure piping systems. They are offered in a broad range of sizes, pressure ratings and types, and they are used in an immense array of diverse applications. Only a few are listed for illustration:

- Normally open valves in main steam lines; used only for equipment isolation, e.g., during maintenance.
- Normally open valves to provide for emergency shutoff due to failure of downstream piping or other equipment; closed periodically for verification of operability.
- Normally open valves that are throttled to varying degrees during start-up or shutdown of plants or systems.
- Frequently cycled valves that are opened and closed for control of batch processes or for start-up and shutdown of equipment (e.g., equipment that is on-stream daily but shut down at night).
- Normally closed valves; used only for filling or draining systems during outages.

Stop valves are sometimes referred to as "on-off valves." They should not normally be considered as "control valves," but they are suitable for moderate or infrequent flowcontrol functions. Valves that must open and close under high differential pressure and flow conditions (such as "blowdown" service) inherently function as flow-control devices while they are stroking.

Considering the diversity of stop valve applications, it is not surprising that there is no universal valve type that is best for all services. Users' experience with specific applications is a valuable basis for selecting the best valves.

The goal of this guide is to supplement users' experience with information based on decades of Flowserve Edward Valves' laboratory tests and field experience.

Introduction

While many other types of valves (ball, plug, butterfly) are used as stop valves where

service conditions permit, emphasis in this guide is on selection and application of Edward valves with forged- and cast-steel bodies and bonnets. Comparisons are presented with other similar valves where appropriate.

Edward stop valves are typically of metalseated construction and, where necessary, use gaskets and stem seals designed for severe high-pressure, high-temperature service. While special designs with "soft seats" and O-ring seals are supplied for unique specific applications, the standard products are designed to stand up to tough service conditions with minimum requirements for maintenance or parts replacement.

Edward stop valves fall into two basic categories – **globe valves** and **gate valves**. The following sections of this guide will address the principal features of each type and the design variations within the types.

Globe valves are offered in stop, stop-check, and check versions. Stop-check valves can also be used for isolation in unidirectional flow applications. These valves are discussed in the Check Valve Applications Guide section (1.2).

The FLOW PERFORMANCE section of this catalog provides equations and coefficients for the calculation of pressure drop across any of these valves. This information can be used to evaluate the effects of different valve sizes and types of system energy efficiency.

1.1.1 Stop Valve Types and Typical Uses

Brief notes on the advantages, disadvantages, applications and limitations of the various types of Edward stop valves are presented in the Stop Valve Applications Chart (section 1.1.5). Some additional highlights of the features of these valves and some comparisons with similar valves are presented in the following paragraphs.

Globe Valves

A globe valve employs a poppet or disc that opens and closes by moving linearly along the seat axis. There are many types of globe valve bodies, seats and methods of guiding the disc to and from the seat.

• **Bodies** – Edward stop, stop-check and check-type globe valves are offered with three basic body styles:

Conventional or 90° bonnet globe valves

are usually the most compact, and the stem and yoke position allow easy handwheel or actuator access and convenience for maintenance. Relatively short stem travel allows fast actuation. Multiple direction changes in the flow stream result in higher pressure drop than with other types, but streamlined flow passages in Flowserve Edward valves generally yield lower pressure drop than competitive valves of this type.

Angle valves are otherwise similar to conventional globe valves, but the less tortuous flow path yields lower pressure drop. Angle valves are particularly economical in piping layouts where use of this configuration eliminates an elbow and associated flanged or welded joints.

Inclined bonnet or "Y type" valves, such as Univalves[®] and Flite-Flow[®] valves, yield lower pressure drop than other styles, because they permit a more nearly straight-through flow path. Typically, they require a longer stem travel. In large sizes, this body shape is heavier and requires a greater end-to-end length than conventional globe valves.

<u>212</u>

• Seats – Industrial globe valves are available from various manufacturers with a broad variety of seat designs—flat or tapered, and integral or inserted (threaded or welded).

All Edward globe valves employ tapered seats with "area contact" under load to seal over minor imperfections. Many similar valves use "line-contact" seats that seal with less load when new but degrade rapidly if damaged at the seating line.

Except for hydraulic stop valves, all Edward globe valves employ integral (hardfaced) body seats to permit compact design and ensure that there can be no leakage "behind" the seat.

• **Disc Guiding** – Globe valve discs can be guided by either the stem or the body. When opened or closed under very high differential pressure, side load due to flow pushes a stem-guided disc eccentric to the seat and makes it difficult to obtain a seal. Under extreme conditions, the stem may bend.

All Edward globe valves employ body-guided discs that are held closely concentric with the body seat. Guiding is provided at both the top and bottom of the disc to form a fully body-guided disc piston. The bottom guide ring on the disc, a Flowserve Edward Valves innovation, minimizes flow behind the disc and minimizes the side load. These features make Edward globe valves well suited to "blowdown" applications in which there is a high differential pressure across the valve when it is partially open.

Since globe valves are not symmetrical with respect to flow, consideration must be given to the direction of flow and differential pressure. It should be noted that the direction of flow when open and differential pressure when closed may not be the same in all applications (e.g., a block valve on a feed line may involve flow into a system when open but may need to prevent leakage out of the system when closed). Users should consider both factors when deciding on the installation direction for a globe valve.

In most globe valve applications, pressure is under the seat when the valve is closed, and the flow is from under to over the seat (termed "flow to open" or "underseat flow"). In installations where the downstream pressure is zero or very low, this arrangement minimizes packing leakage problems. However, handwheel or actuator effort to close the valve is high, because the stem must supply enough load to both overcome the differential pressure load across the seat area and ensure sufficient sealing load on the metal seatcontact surfaces. Since this flow direction is the most common for globe valves, the flow coefficients given in the Flow Performance section of this catalog are for underseat flow.

Globe valves can also be used with overseat flow and pressure ("flow to close"), but such applications require careful consideration. In systems with dirty line fluids, this arrangement could lead to trapping foreign material in locations where it would interfere with opening. With overseat pressure, the effort to close the valve is low, because closure and sealing are pressure-assisted. However, the effort to open the valve at high differential pressure is high, because the stem must overcome the pressure force to lift the disc (in small valves, the stem diameters approaching the seat diameter, this may not be a problem, because the pressure helps to lift the stem). Also, since the flow coefficients given in this catalog are for underseat flow, pressure-drop predictions may not be as accurate (pressure drop may be up to 10% higher with overseat flow).

While not designed as control valves and not recommended for continuous modulation, Edward globe valves are often used successfully for manual or automatic control during limited periods of system operation (start-up, shutdown, etc.). Some manual valves are also used for continuous throttling or "trimming." Inclined-bonnet valves, (e.g., Univalves and Flite-Flow valves) have an approximately linear flow characteristic (C_v versus % open).

The Flow Performance section of this catalog covers only flow coefficients for fully open valves, but consult Flowserve concerning applications involving flow control. It should be understood that severe throttling at highpressure drops involves high-energy dissipation, and serious problems (e.g., noise, vibration, cavitation, erosion) can develop if not carefully considered when a system is designed.

Gate Valves

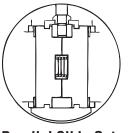
A gate valve employs a closure member (or assembly) that opens and closes by moving perpendicular to the flow stream to engage two seats in the body. There are two basically different types of gate valves—parallelside and wedge gate—in common use in pressure-piping systems, but there are many variations in design within each type.

As compared to glove valves, all gate valves offer straight-through flow paths that tend to produce less pressure drop than typical globe valves of the same nominal size. A Venturi gate valve with a smaller port versus a regular gate valve may offer a lower first cost as well as a size and weight saving if a minimized pressure drop is not required.

The Flow Performance section of this catalog gives comparable flow coefficients for Edward Equiwedge[®] gate valves and all Edward globe stop valves. Evaluation of many valve applications has shown that inclined-bonnet globe valves are often competitive with gate valves when all factors are considered.

The stem in a gate valve does not have to overcome the full differential pressure load across the valve seat area to open or close the valve. Instead, it just has to overcome the friction force due to that load. Consequently, for operation at similar differential pressures, a gate valve generally requires less effort for actuation than a globe valve and can employ a smaller actuator when powered operation is required. However, a gate valve requires considerably greater stem travel than a conventional globe or angle valve (slightly greater than an inclined-bonnet globe valve), so a somewhat longer time may be required for action.

The two body seats – the common feature in all ordinary gate valves – can be both an advantage and a disadvantage. Most gate valves are primarily "downstream-sealing," because the closure member is pressure-energized in that direction. However, the upstream seating surfaces may help by limiting leakage if the


downstream seat is damaged. Simultaneous sealing at both seats can be hazardous if the center cavity of a closed valve is filled or partially filled with liquid and then subjected to an increase in temperature, causing a corresponding increase in pressure. In moderate cases, this may cause "pressure binding," which can impede or prevent valve opening; in extreme cases, it may cause pressure-boundary failure (e.g., the bonnet could blow off).

Note: ASME/ANSI B16.34-1988 (paragraph 2.3.3) places the responsibility of the purchaser to ensure that the pressure in the valve will not exceed that allowed by the standard. Special operating procedures, such as partially opening a valve during warm-up, may be considered. Special internal design features or external bypass arrangements are required in many applications. Consult Flowserve regarding Edward Equiwedge gate valve applications that may be subject to possible center-cavity over-pressurization.

Some highlights of the various types of gate valves, including the Edward Equiwedge, are discussed below:

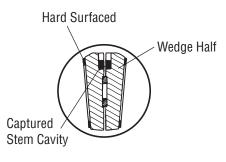
• Parallel-Slide Gate Valves

Flowserve Edward Valves does not offer parallel-slide valves. In these valves, the two seats in the body are in parallel planes, and an assembly including two gates with parallel seating faces moves into or out of engagement with the body seats. The gates are urged into contact with the opposing seats in the closed position by either a spring (or a set of springs) or an internal wedge mechanism.

Parallel Slide Gate

Since the two gates are relatively independent, the downstream gate is free to align with the downstream seat, and new valves usually seal well so long as the differential pressure across the valve is sufficient to provide adequate seating load. Leakage may be a problem with these valves at low differential pressures (e.g. when filling a system or during low-pressure start-up operation).

In typical parallel-slide valves, there is continuous sliding contact between the sealing surfaces of the gates and body seats throughout the full stem stroke. Wearing or scoring is possible, particularly when operating with high differential pressures, and this may cause seat sealing to be degraded. This shearing action may be helpful in cleaning loose debris from the seats, however.


• Wedge Gate Valves

A wedge gate valve uses one of the oldest engineering principles to provide mechanical advantage to convert stem load to seatsealing load. This is particularly important in low-pressure applications where differential pressure alone may not provide sufficient loading on the downstream seat.

Early wedge gate valves for low pressure employed solid wedges, and these are still used in many small high-pressure gate valves. However, as industrial valve requirements moved toward larger sizes and higher pressures and temperatures, a solid wedge designed to provide sufficient strength became too rigid to accommodate the flexibility of the valve body. The seat planes deflect significantly in large, high-pressure valve bodies due to thermal effects and the loads from connecting piping, and a rigid wedge may either leak or bind in the closed position.

Many gate valves have been designed with "flexible" one-piece wedges that have overcome these problems to some degree, but the two halves of the wedge are not truly independent and free to align with the two opposing body seats. It is particularly difficult to provide torsional flexibility in the wedge to accommodate twist in the valve body.

Consequently, the Edward Equiwedge valve was designed with two independent, flexible wedge halves that permit relative rotation and can tilt to accommodate changes in the bodyseat angles. The thickness of the wedges was minimized, while maintaining acceptable stresses, to allow deflection to accommodate out-of-flatness in the seat plane. In prototype tests, acceptable sealing was maintained with seats intentionally misaligned 1° in angle and up to 2° in rotation.

Double Wedge Design

The result is a valve that has high-pressure sealing performance comparable to that of a parallel-slide valve but that can also seal exceptionally well at low differential pressures. The independent, flexible wedge halves in Edward Equiwedge gate valves also have commendable resistance to sticking or binding in the closed position. In prototype tests, the valve always opened with a torque less than the design closing torque when exposed to extreme pipe-bending moments and severe thermal transients (heat-up and cool-down).

All wedge gate valves have body guides that must support the wedges when they are not in the fully closed position. The seating surfaces of the wedges and seats are in sliding contact only through a small portion of the opening and closing travel, thus minimizing wear that may degrade seat sealing. Outside that range, the side loads are transferred from the seats to the body guides. Wear or scoring of the body guides does not affect sealing.

In Edward Equiwedge gate valves, the body guides are vertical machined grooves at each side of the valve body, which engage tongues on each side of the wedge halves. Precision machining allows transfer of side load from the seats to the body guides within 3% to 5% of valve travel. Testing has proven that this guiding system is rugged and supports the gate assembly effectively, even in "blowdown" services where high differential pressure loads act across the gates when the valve is partially open.

Gate valves of any type are usually not recommended for throttling or modulating flow-control service. The seating surfaces of the gates are subject to impingement when partially open, and some gate valves reportedly exhibit instability (internal vibration) when throttled. Nevertheless, high-velocity flow tests of a prototype Edward Equiwedge gate valve produced no flow-induced vibration, and there are cases where these valves have been used successfully for limited flow-control functions. Consult Flowserve concerning any proposed throttling or control applications.

1.1.2 Throttling Characteristics of Edward Stop Valves

As noted in the previous section, Edward stop valves are not normally recommended for continuous modulation, and Edward Valves should be consulted concerning applications involving flow control. This

flowserve.com

section is intended only to provide general guidelines on flow-control characteristics of typical Edward stop valves. These guidelines may be used for preliminary studies relating to applications involving throttling, but they should not be considered as a substitute for a complete evaluation of the acceptability of a valve for a critical application.

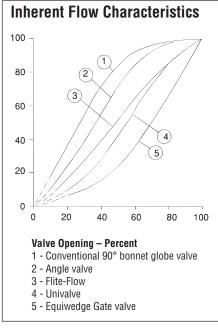


Figure A provides typical **inherent flow-characteristic** curves (percent of full-open flow coefficient versus percent opening) of the most common types of Edward stop valves. It should be understood that these curves are approximate, because there are variations due to size and pressure class that cannot be represented accurately by a single curve for each valve type. Nevertheless, these typical curves can provide some guidance relating to control capabilities of the various valve types.

Note the following subtle differences between the curves in Figure A:

- The conventional 90° bonnet globe valve provides a relatively steep slope at small openings approaching a "quick-opening" characteristic. While the body-guided disc in Edward globe valves moderates this effect, it makes the flow coefficient very sensitive to small changes in stem position, so it may prove difficult to control low flow rates.
- The angle valve has a characteristic similar to that of a globe valve, but it is slightly

closer to linear due to its normally higher full-open flow coefficient. An angle valve has about the same control characteristics as a globe valve of the same size at small openings.

- The cast-steel Flite-Flow Y-type valve provides a characteristic that is nearly linear over most of its stem-travel range.
 For control of flow over a broad range, the high flow efficiency of this type of valve may permit use of a smaller valve size for a given allowable pressure drop. The smaller size, combined with the linear characteristic, can give improved control of low flow rates when the valve is throttled.
- The forged-steel Y-type Univalve provides even better control at very small openings because of its "double throttling" characteristic as the lower disc-guide ring opens the machined port in the body. Other forged-steel valves have this characteristic to some degree.
- The Equiwedge gate valve has an excellent inherent flow characteristic ("concave upward"), approaching that of an equalpercentage control valve. However, this is somewhat misleading. When installed in pipe of the same nominal size as the valve, the pressure drop of a gate valve is so low at large openings (e.g., over 70%) that piping flow resistance usually overshadows that of the valve. The gate valve would provide little control over flow in that range.

While not normally recommended for throttling for the reasons cited in the previous section, the gate valve flow-characteristic curve is attractive from a standpoint of controlling low flow rates without excessive sensitivity. Use of a gate valve for throttling may be considered for some applications.

1.1.3 Stop Valve Actuators and Accessories

Most Edward stop and stop-check valves illustrated in this catalog are shown with handwheels, and the majority of valves are furnished for applications where manual actuation is acceptable. Most larger and higher-pressure globe valves are furnished with standard Impactor handles or handwheels, which provide up to twelve times the stem force of an ordinary handwheel, to provide for adequate seating thrust. Impactogear assemblies on the largest globe valves permit operation using an air wrench. These Flowserve Edward Valves innovations permit practical manual operation of many valves that would otherwise require gearing or power actuators.

Manual Gear Actuators

When specified, many Edward valves can be supplied with manual actuators with gear reduction in lieu of a handwheel. Such actuators reduce the required rim-pull effort and often permit operation by one person in cases where several people would be required to seat the valve with a handwheel. While manual gear actuators slow down operation, they are often an attractive option for valves that are not operated frequently. Operating pressure and differential pressure should be specified.

Note: Users sometimes specify that valves be operable at maximum differential pressure with very low rim-pull forces. This may require selection of gearing that may cause two problems: (1) literally thousands of handwheel turns for full-stroke valve operation and/or (2) capability to damage the valve easily with rim-pull forces that are readily applied by many operating personnel. Manual gear actuators with high ratios provide relatively little "feel" to the operator, and it is difficult to tell when a valve is fully open or closed. Good judgment should be exercised in specifying practical rim-pull force requirements.

Power Actuators

Where valves are inaccessible for manual operation or where relatively fast opening or closing is required, most Edward valves can be furnished with power actuators. The most commonly used actuators are electric actuators with torque- and position-control features. Users frequently have individual preferences on actuator brand names and type, so Edward valves can be furnished with Flowserve actuators or other brand actuators to satisfy customer requirements.

Flowserve establishes actuator sizes and switch setting based on specific valveapplication requirements, using a computer program that matches the valve and actuator operating characteristics to the servicepressure conditions. Flowserve can help make this selection since we best know the requirements of our valve. However, we must also know the requirements of your application. As a minimum, requests for quotation should specify:

- Operating pressures under-and over-seat and differential
- Maximum valve operating temperature
- Ambient conditions temperature, humidity, radiation
- Motor power supply AC voltage, frequency, and phase or DC voltage (including variance)

- NEMA rating
- Closing/opening time if important. If not specified, standard nominal stem speed will be 4 inches/minute (100 mm/min) for globe valves and 12 inches/min (305 mm/min) for gate valves.
- Valve-stem plane vertical (stem up or down) or horizontal
- Special accessories position indicator, etc.

Any other special requirements should be clearly specified. If there are non-standard manual-override requirements, see the note on the previous page regarding rim-pull forces for manual gear actuators.

Stored-Energy Actuators

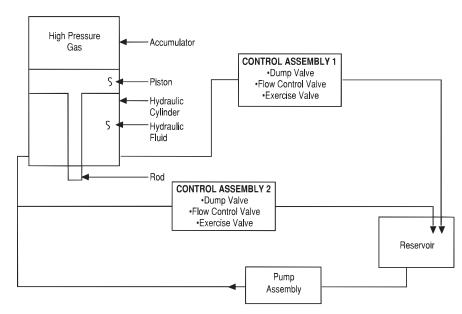
For critical service applications, special balanced Flite-Flow valves and Equiwedge gate valves are furnished with Edward storedenergy actuators that were developed and qualified to meet demanding nuclear powerplant requirements. These linear actuators are commonly installed on Main Steam Isolation Valves and Main Feedwater Isolation Valves (MSIV and MFIV) that must be adjustable to close in 3 to 10 seconds in the event of a line break.

The Edward actuator completed exhaustive qualification testing under elevated temperatures, radiation, seismic loadings and other conditions that realistically simulated the most severe operating conditions encountered in actual service. In addition, extensive qualification testing was done on an Equiwedge MSIV in combination with an Edward

actuator, and over 160 of these combinations are installed in nuclear plants on three continents.

The Edward actuator employs compressed gas—the stored energy of closure of the valve—in a compact, essentially spherical reservoir atop the piston of the valveactuating cylinder. This integral construction eliminates reliance on external gas-storage tanks or interconnecting piping to connect the stored-energy gas to the power cylinder. Hydraulic fluid is pumped into the cylinder below the piston to open the valve, and regulated release of the fluid to a reservoir provides essential closing-speed control.

1.1.4 By-Passes and Drains


When specified, larger Edward cast-steel valves are furnished with valved by-passes and drains in accordance with ASME-ANSI B16.34 and MSS SP-45. Cast-steel stop valves employ forged-steel Edward globe

stop valves, and cast-steel stop-check valves use forged steel Edward stop-check valves as by-pass valves. Sizes and by-pass valve figure numbers are as shown on page 188.

Drain valves for all main valves are the same as the by-pass valves listed for stop valves. When drains are specified without valves, the standard drain for class 300 and 600 valves is an NPT tapped hole in the valve body, fitted with a pipe plug. For class 900 and higherpressure valves, the standard drain is a pipe nipple, six inches (152 mm) long, socketwelded to the valve body.

Drain sizes are the same as by-passes. By-pass valves are particularly useful when opened before the main valve to permit controlled warming of the valve and downstream line in services involving steam or other hot fluids. By-passes also can be used to partially or fully balance the differential pressure across the main valve before opening where the downstream line or system is of limited volume. This facilitates opening of a gate valve or a glove valve with overseat pressure.

Large-volume systems may require larger bypasses for balancing in a reasonable time. If this is the case, a special by-pass size should be specified by the purchaser. It should be noted that actuated Edward Equiwedge gate valves do not require by-passes to permit opening if the full differential pressure is specified for actuator sizing. See page 188 for tables of standard sizes and pressure classes for most applications.

General schematic of stored energy gas-hydraulic actuator.

1.1.5 Stop Valve Applications Chart

Туре	Advantages	Disadvantages	Applications	Limitations
Globe 90° Bonnet	 Compact Easy access to handwheel or actuator Fast response 	 High pressure drop High torque Heavy in large sizes 	 Class 300-2500 steam and water Other gasses and liquids Usable for throttling 	 Not for stem-down installations Sizes ¼" through 24"
Angle	 Same as globe Replaces an elbow Lower pressure drop than globe 	High torqueHeavy in large sizes	• Same as globe	• Same as globe
Globe Inclined Bonnet	 Lower pressure drop than globe or angle May permit smaller size than globe 	 Same as angle Longest end-to-end length Handwheel or actuator on an angle Long stem travel slows response 	 Class 600-4500 through size 4 Class 300-2500 through size 24 Otherwise, same as globe 	• Same as globe
Equiwedge® Gate	 Lowest pressure drop Lowest torque May permit smallest size 	 Not recommended for throttling Long stem travel slows response with manual actuation 	 Class 600-2500 steam and water Other gasses and liquids Main steam isolation 	 Possibility of pressure binding Sizes 2½" through 32"
Flex Wedge Gate	 Lowest pressure drop Lowest torque May permit smallest size Best general purpose gate valve 	 Not recommended for throttling Long stem travel slows response with manual actuation Not suited for severe service 	 Class 150-2500 steam and water Other gases and liquids 	 Possibility of pressure binding Possibility of thermal binding Sizes 2½" through 32"
Double-Disc Gate	 Lowest pressure drop Tightest sealing Immune to thermal binding 	Not quoted for turbulant flow or severe service	 Class 150-2500 steam and water Other gases and liquids Main steam isolation 	 Possibility of pressure binding Sizes ½" through 32"

1.2 Check Valve Applications Guide

Foreword

Check valves are used in fluid circuits in applications similar to those in which diodes are used in electrical circuits. Reduced to simplest terms, the duty of most check valves is to allow flow in one direction and to prevent flow in the reverse direction. The ideal check would have zero resistance to flow in the normal flow direction and infinite resistance to flow (leakage) in the reverse direction. Of course, the ideal check valve should also be perfectly reliable and should require no maintenance.

There are many different types of check valves, and most do their duty well, giving long, trouble-free service. However, in the real world, no single type of check valve achieves the ideal performance characteristics users sometimes expect. In a very few cases, mismatching of check valves to the needs of fluid circuits has produced serious problems (noise, vibration, severe pressure surges and check-element failures with attendant gross leakage and consequential damage to other equipment). While it is not necessary for every application to be ideal, knowledge of the characteristics of each type of check valve should help system designers and valve users to select the best type and size intelligently. This knowledge should also help in ensuring that serious problems are avoided.

Most check valves seem deceptively simple, with only one moving part—a poppet or flapper that appears capable of allowing flow in only one direction. However, this single mechanical part cannot be expected to take the place of a sophisticated control system that senses flow (direction, quantity, rate of change) and provides output to (1) open the valve fully when flow is in one direction and yet (2) close the valve to prevent flow and leakage in the reverse direction. Each type of check valve has features that enable it to perform one or more of its duties well, but each type also has weaknesses. The relative importance of these strengths and weaknesses is highly dependent on the requirements of individual applications.

The goal of this guide is to provide application engineers and users with practical advice on check valve selection and sizing, location in piping systems, preventive maintenance and repairs. Emphasis will be on Flowserve Edward Valves products, but comparisons will be provided in some cases with other types of check valves.

This guide is based on extensive testing of Edward check valves in sizes from NPS 1/2 through 18 as well as a reasonable sampling of other types. Since complete performance testing of every valve type, size and pressure class is not practical, predictions of the performance of some valves are based on mathematical models. However, the models are based on substantial test data and are believed to be reasonably accurate or conservative. The laboratory test files cover over 40 years. Perhaps even more important, the files include feedback from substantial field experience—in fossil and nuclear-fueled power plants, refineries, chemical plants, oil fields and in countless other applications. It is hoped that this test and field experience will help others avoid problems and pitfalls in the application and use of check valves.

Introduction

This guide has been prepared to aid fluidsystem designers in sizing and selecting check valves for industrial and power-piping systems. Guidance is also provided on valve orientation (inclination from horizontal, etc.) and on location of check valves with respect to other flow disturbances. In addition, this guide should aid users in planning preventive maintenance programs, performing maintenance and repairs when necessary, and in evaluating and correcting problems.

Emphasis in this guide is on selection and application of forged- and cast-steel Edward Valves products, but comparisons with other types of check valves are given where this can be done based on valid information.

The Flow Performance section of this catalog provides equations and coefficients for the calculation of pressure drop and the flow required to ensure full valve opening. In addition, that section provides most of the necessary supplemental data required for routine calculations, such as water and steam density.


This guide also provides caution notes relative to system-related problems to be avoided (such as piping vibration, flow instability, waterhammer). Some of these guidelines are qualitative and could involve further analysis. However, attention to these notes should help to avoid problems.

Finally, this guide addresses check valve maintenance. History indicates that preventive maintenance of check valves is often

neglected, and this can lead to serious valve failures which may damage other equipment. The guidelines provided on periodic inspection and preventive maintenance should pay off in terms of reduced overall plant maintenance and repair costs.

1.2.1 Check Valve Types and Typical Uses

While other types are sometimes encountered in power hydraulics and other specialized applications, four basic types of check valves are commonly used in industrial and power piping applications.

1-Lift Check Valves

The closure element is a poppet or disc that is lifted open by flow and which seats, usually on a mating conical surface in the valve body, under no-flow conditions.

2-Ball Check Valves

A lift check valve in which the closure element is a ball.

3-Swing Check Valves

The closure element is a pivoted flapper that is swung open by flow and which seats, generally against a mating flat surface in the valve body, under no-flow conditions.

4-Tilting-Disc Check Valve

The closure element is a pivoted disc or flapper, somewhat like that in a swing check valve but with a pivot axis close to the center of the flow stream. It is swung open by flow and seats against a mating conical surface in the valve body under no-flow conditions.

There are many variations among these four basic types of check valves. For example, springs may be included to assist closure and counteract gravitational forces, and accessories may be provided for exercising or position indication. All Edward lift check valves employ body-guided discs with a piston-like extension to provide good guidance and resistance to wear. Accordingly, they are referred to in this guide as piston-lift check valves. In addition, Flowserve manufactures Edward stop-check valves that are piston-lift check valves that allow positive closure for isolation, just like globe stop valves.

Illustrations of the Edward valve types manufactured by Flowserve are provided in this catalog, and brief notes on advantages, disadvantages, applications, and limitations are provided in the Check Valve Applications Chart (section 1.2.2). Some further highlights of the features of these valves are provided in the following paragraphs.

Edward Piston-Lift Check Valves

In both small forged-steel and large caststeel Edward lines, three distinctly different valve body styles appear in the illustrations – inclined-bonnet globe valve style, angle valve style, and 90° bonnet globe valve style.

With respect to check valve function, these valves are all similar, with only slightly different orientation limits as discussed in the Valve-Installation Guidelines section (1.3). The main difference between these systems is in flow performance:

• Inclined-bonnet piston-lift check valves produce low pressure drop due to flow when fully open. They have flow coefficients comparable to those of tilting-disc check valves and only slightly lower than provided by many swing check valves.

 In most cases, angle piston-lift check valves have lower flow coefficients and thus produce more pressure drop than inclinedbonnet valves, but they are superior to 90° bonnet valves. Where a piping system requires a bend and a valve, use of an angle piston-lift check valve eliminates the cost and pressure drop of an elbow and the cost of associated piping welds or flanged connections.

 90° bonnet piston-lift check valves have the lowest flow coefficients and produce pressure drops comparable to 90° bonnet globe valves. They are sometimes preferred in systems where pressure drop is not critical or where space requirements dictate a minimum size and easy access to a handwheel or actuator (on a stop-check valve).

Piston-lift check valves are generally the most practical type for small sizes, and they generally provide the best seat tightness. Small forged-steel piston-lift check valves normally include a disc-return spring, but may be ordered without springs. The Flow Performance section of this catalog and section 1.3 on page 222 address such valves, both with and without springs. Cast-steel piston-lift check valves have equalizer tubes which connect the volume above the piston with a relatively low-pressure region near the valve outlet. This feature allows a much larger valve opening (and higher flow coefficient) than would be possible otherwise, and it allows the valve to open fully at a relatively low flow.

The body-guided feature of Edward pistonlift check valves is an advantage in most services, because it ensures good alignment of the disc with the valve seat and minimizes lateral vibration and wear. However, this feature may lead to sticking problems due to foreign-material entrapment in unusually dirty systems. Another inherent characteristic is that large piston-lift check valves may not respond rapidly to flow reversals and may cause waterhammer problems in systems where the flow reverses quickly [see the Pressure Surge and Waterhammer section (1.4.2)]. Since smaller valves display inherently faster response, historic files have shown no waterhammer problems with small forged-steel check valves.

Edward Stop-Check Valves

Stop-check valves offer the same tight sealing performance as a globe stop valve and at the same time give piston-lift check valve protection in the event of backflow. A stopcheck valve is nearly identical to a stop valve, but the valve stem is not connected to the disc. When the stem is in the "open" position, the disc is free to open and close in response to flow, just as in a piston-lift check valve. When serving as a check valve, stop-check valves display the same advantages and disadvantages as discussed above for pistonlift check valves. Small forged-steel stopcheck valves, except the Univalve stop-check valves, employ a disc-return spring, and caststeel stop-check valves have equalizer tubes that function in the same manner as those on comparable piston-lift check valves.

The stem in the stop-check valve may be driven either by a handwheel or an actuator, and it may be used either to (1) prevent flow in the normal direction when necessary for isolation or (2) supplement line pressure to

enhance seat tightness in applications with pressure from the downstream side. Some users automate stop-check valves to give extra system protection against reverse flow and leakage. For example, an actuator may be signaled to close the valve when a pump is shut off; the disc closes quickly by normal check valve action, and the stem follows to seat the valve firmly a short time later.

Edward Ball Check Valves

Ball check valves are offered only in small forged-steel configurations (size 2 and smaller) with inclined-bonnet bodies and ball-return springs. These valves are recommended over piston check valves, for service with viscous fluids or where there is scale or sediment in the system. The bolted-bonnet versions offer flow performance that is generally similar to that of equivalent piston-lift check valves, and they are the preferred ball check valves for most industrial and power-piping applications.

The threaded-bonnet hydraulic ball check valves are used primarily in very highpressure, low-flow applications with viscous fluids. They have lower flow coefficients that have proven acceptable for those services. These valves sometimes exhibit chattering tendencies when handling water, so they are not recommended for low-viscosity fluids.

A unique feature of the ball check valve is that the ball closure element is free to rotate during operation, allowing the ball and seat to wear relatively evenly. This feature, combined with the standard return spring, helps to promote positive seating even with heavy, viscous fluids.

Edward Tilting-Disc Check Valves

Tilting-disc check valves are particularly wellsuited to applications where rapid response and freedom from sticking are essential. Fully open valves of this type also exhibit low pressure drop. They have flow coefficients comparable to those of Edward inclined-bonnet piston-lift (Flite-Flow) check valves and only slightly lower than provided by many swing check valves.

Tilting-disc check valves provide rapid response, because the center of mass of the disc is close to the pivot axis. Just as in a pendulum, this characteristic promotes rapid motion of the disc toward its natural (closed) position whenever the force holding it open is removed. This response can be valuable in applications where relatively rapid flow reversals may occur, such as in pump-discharge service where multiple pumps discharge into a common manifold. In such cases, the flow may reverse quickly, and the rapid response of the tilting-disc check valve minimizes the magnitude of the reverse velocity and the resulting waterhammer pressure surge. This characteristic also minimizes impact stresses on the disc and body seats. However, an extremely rapid flow reversal, as might be produced by an upstream pipe rupture, could cause a problem. See the Pressure Surge and Waterhammer section (1.4.2) for further discussion.

Size 6 and larger tilting-disc check valves have totally enclosed torsion springs in their hinge pins to help initiate the closing motion, but the disc is counterweighted to fully close without the springs. With the free pivoting action of the disc, this type of valve is highly immune to sticking due to debris in the system.

Tilting-disc check valve are superficially similar to swing check valves in that both operate on a pivoting-disc principle. However, the pivot axis in a swing check valve is much farther from the disc's center of mass, and this increases the "pendulum period" and hence the time required for closure in services with flow reversal. In addition, the one-piece disc in the tilting-disc check valve avoids the necessity of internal fasteners and locking devices, which are required to secure discs to pivot arms in most swing check valves. However, like swing check valves, tilting-disc check valves have hinge pins and bearings that are subject to wear due to disc flutter if the valve is not fully open and/or there are flow disturbances or instabilities. Such wear may product eccentricity of the disc and seat when the valve closes, leading to a degradation of seat tightness (particularly at low differential pressures). Applications involving severely unstable flow or prolonged service without preventive maintenance can lead to failures in which the disc separates completely from the hinge pins and will not close. Other sections of this guide address the flow conditions which may lead to problems as well as maintenance recommendations.

Edward Elbow-Down Check and Stop-Check Valves

Elbow-down piston-lift check and stop-check valves are similar to Flite-Flow valves except that the valve outlet is in the form of an elbow to direct the flow downward. These valves were designed specifically for applications in controlled-circulation power plants, and they have special clearances and other design features. Because of these special features, the sizing and pressure-drop calculation methods given in the Flow Performance section of this catalog do not apply. However, special elbow-down valves can be furnished with conventional check valve design features for applications where this valve-body geometry is desirable.

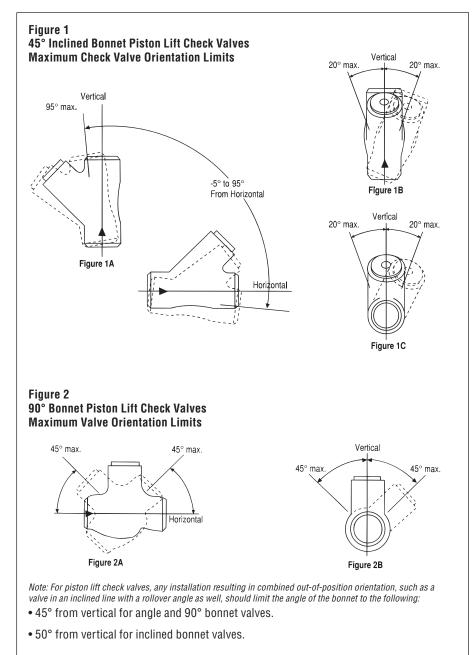
Edward Combinations of Check and Stop-Check Valves

As noted in the Foreword to this section (1.2), no single type of check valve achieves ideal performance characteristics. The advantages and disadvantages noted in the Check Valve Applications Chart (section 1.2.2) and other information in this catalog should assist in selection of the best valve size and type for any specific application. However, the selection of any single valve may require undesirable compromises.

Some system designers and users specify two check valves in series for critical applications, and this does give some insurance

1.2.2 Check Valve Applications Chart

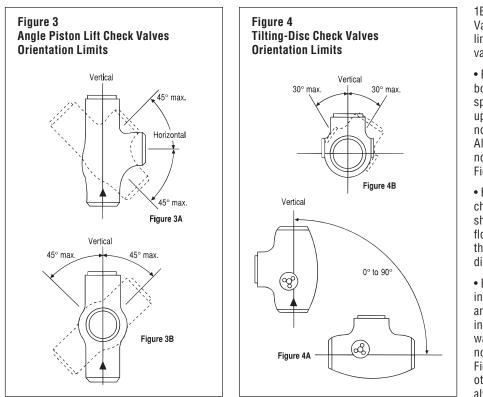
Advantaç	es	Disadvantages	Applications	Limitations
	v pressure drop in bonnet valves	 Relatively high pressure drop in 90° bonnet valves 	Class 300-4500 service	• Sizes ¼" through 24"
Relative	ly low pressure drop	• Subject to "sticking" in very	High temperature steam and water	• For orientation limits, see valve installation guidelines
in angle • Larger v	valves valves incorporate an	dirty systems	Refining, petrochmical, chemical, etc.	• For flow limits, see Flow Performance section of this
lift Chock	equalizer		Oilfield production	catalog
Minimu disturba	m chatter due to flow inces		• Can be used in series with Tilting-Disc Check to provide	
	at tightness		maximum line protection	
-	steel valves with an be mounted in ntation		(advantages of both types)	
	l body seat and ement evenly ted	 High pressure drop Available only in small sizes 	Class 600 and Series 1500 service	 Sizes ¼" through 2" For orientation limits see
• Long se			Water, steam, refining, petrochemical, chemical,	valve installation guidelines
5	steel valves with		etc.	Not recommended for gas service at low flow rates
	an be mounted in		Service where scale and sediment exist	• For flow limits, see Flow Performance section of thi
	e with either or threaded seat for c valve		Viscous fluids	catalog
• Low cos	st			
-	v pressure drop	Not recommended for service with rapidly fluctu-	Class 600-4500 service	• Sizes 21/2" through 24"
Straight design	through body	ating flow	High temperature steam and water	 For orientation limits, see valve installation guidelines
• Very fas	t closing	Seat tightness may dete- riorate at low differential	Refining, petrochemical,	• For flow limits, see Flow
	es disc slamming erhammer pressure	pressure	chemical, etc.Oilfield production	Performance section of this catalog
surges			Can be used in series with	
• Will not systems	"stick" in dirty		Piston Lift check or Stop- Check to provide maximum line protection (advantages of both types)	
• See Pis	on Lift Check above	See Piston Lift Check valve	See Piston Lift Check above	See Piston Lift Check above
Can be service	used for Stop valve	above		
IEGA	n be lowered onto prevent chatter at			
• Stem fo "stickin	rce can overcome g"			
Best ge valve	neral service check	 Not good for low or pulsating flows 	Class 150-2500 service High temperature steam and	• Sizes 2½" through 24"
Tight se Lowest	aling pressure drop	• Slower response to reverse flow	water including containment isolation	
Check		 Susceptible to causing waterhammer 		
	pressure drop			


that at least one valve will close even if the other valve fails. However, if two identical valves are used, a system characteristic that is troublesome to one valve could produce problems with both. In such cases, use of two valves does not ensure double safety or double life. Sometimes it is worth considering the selection of two different types of check valve, each with advantages to offset disadvantages of the other.

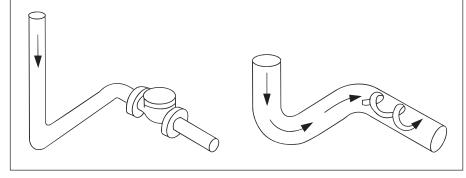
One specific check valve combination has been used in applications of Flowserve Edward valves to provide advantages that no single valve can offer. A tilting-disc check valve in series with a piston-lift check valve offers minimum waterhammer and freedom from sticking (from the tilting disc) and good seat tightness (from the piston-lift check). The disadvantage is added pressure drop and cost, but the pressure-drop penalty is minor if the Flite-Flow inclined-bonnet piston-lift check valve is used. Even the cost penalty may be offset if a stop-check valve is used, because it may be able to take the place of a stop valve that would be required otherwise for isolation.

1.3 Check and Stop-Check Valve Installation Guidelines

Unlike stop valves, which can be installed in any position with little or no effect on performance, most check and stop-check valves have limitations as to their installed orientation. Although the normal installation is in a horizontal or vertical line (depending on valve type), check and stop-check valves can be installed in other orientations. It should be noted, however, that valves installed in other than the normal positions may exhibit a degradation of performance, service life and resistance to sticking, depending on the flow conditions and cleanliness of the line fluid. For maximum reliability, it is recommended that piston-lift check valves and stop-check valves be installed with flow axis horizontal (vertical inlet and horizontal outlet for angle valves) with the bonnet above the valve in a vertical plane. Following are maximum outof-position orientations that may be used for less critical applications and which should never be exceeded.


 All Edward forged-steel check and stopcheck valves (except Univalve stop-check valves) are normally furnished with springloaded discs and may be installed in any position. The spring-loaded disc enables positive closure regardless of valve position.

However, installed positions in which dirt or scale can accumulate in the valve neck should be avoided. An example of this would be an inclined-bonnet valve installed in a vertical pipeline with downward flow. If forgedsteel valves are ordered without springs, the limitations below should be observed.


• Edward cast-steel Flite-Flow, forged-steel Univalve, and inclined-bonnet check and stop-check valves without springs, when installed in vertical or near vertical lines, should be oriented such that the fluid flow is upward and the angle of incline of the line is not more than 5° past the vertical in the direction of the bonnet. When installed in horizontal or near horizontal lines, the valve bonnet should be up and the angle of incline of the line should be not more than 5° below the horizontal. See Figure 1A. Also, the roll angle of the valve bonnet should not be more than 20° from side to side for either vertical or horizontal installations. See Figures

flowserve.com

Figure 5 Pipe fittings near valves may produce instability because of velocity profile distortion

Figure 7 Elbows in two places cause swirl, which can promote instability.

1B and 1C. Consult your Flowserve Edward Valves representative concerning installation limits of bolted-bonnet forged-steel check valves without springs.

• Edward cast-steel and forge-steel 90° bonnet check and stop-check valves without springs should be installed with the bonnet up, and the angle of incline of the line should not be more than 45° from the horizontal. Also, the roll angle of the valve bonnet should not be more than 45° from side to side. See Figures 2A and 2B.

• Edward cast-steel and forged-steel angle check and stop-check valves without springs should be oriented such that the incoming flow is upward, and the angle of incline of the line should not be more than 45° in either direction. See Figures 3A and 3B.

• Edward tilting-disc check valves may be installed in horizontal lines and vertical lines and at any incline angle in between. When the incline angle is not horizontal, flow should always be up. The roll angle of the valve should not be more than 30° from side to side. See Figures 4A and 4B. Also, when installed in other than vertical lines, the bonnet should always be oriented up.

Figure 6 Non-uniform velocity profile at blower or pump discharge can affect stability.

In each case described above, the limitations given for line inclination and bonnet roll angle should not be combined.

It should be understood that the information given in the section of this catalog titled Flow Performance is based on traditional horizontal orientations. For other orientations, the pressure drop and flow required for full lift may be affected. In addition, seat tightness, particularly at low differential pressures, may be adversely affected.

Orientation restrictions may also exist for power-actuated stop-check valves. Most linear valve actuators are designed to be mounted upright and nearly vertical, although they can usually be modified for mounting in any position. When selecting a stop-check valve and power actuator, be sure to specify the mounting position desired if not vertical and upright.

1.3.1 Adjacent Flow Disturbances

Check valves, like other valve types, are generally tested for performance and flow capacity in long, straight-pipe runs. Flow coefficients obtained from these tests are then used to predict the flow rate or pressure drop that will be experienced in actual applications. The ideal installation of a check valve in a plant would be in a long run of straight pipe so that performance would correspond to the test conditions. Since space limitations involved with many installations preclude such ideal straight-pipe runs, the effects of adjacent pipe fittings, control valves, pumps and other flow disturbances must be considered.

Previously published data have indicated that flow disturbances, particularly upstream disturbances, may significantly affect check valve performance. It has been reported that valve flow capacity may be significantly reduced as compared to that measured in straight-pipe tests, and there have been strong suggestions that such disturbances appravate check valve flutter and vibration. Since these conditions could degrade valve performance and contribute to rapid wear and premature valve failure, they are important factors in evaluating check valve applications. Figure 5 illustrates how upstream pipe fittings may alter the flow profile entering a check valve, crowding it to one side or the other. A similar distortion occurs in a valve located near the discharge of a centrifugal pump or blower, as shown in Figure 6. Elbows in two planes cause a flow stream to swirl, which might produce unusual effects on a check valve installed as shown in Figure 7.

Since there was no known way to predict the effects of flow disturbances on check valves by mathematical models, Flowserve conducted extensive testing of size 2, 4, 8 and 10 check valves in straight-pipe runs and in piping with upstream flow disturbances. Figures 8 and 9 illustrate typical flow-test setups.

Figure 8

Size 4 Class 600 90° bonnet piston lift check valve with two upstream elbows (out of plane). This arrangement produces swirl as shown in Figure 7.

Figure 9

Size 10 Class 1500 Flite-Flow inclined bonnet piston lift check valve with two upstream elbows. Test loop capacity permitted tests with line velocity over 20 ft/s (6 m/s).

In most tests, room-temperature water was the flow medium, but limited straight-pipe testing was performed with air. The valves tested included Edward piston-lift check (inclined-bonnet, angle and 90° bonnet), tilting-disc check valves and a size 4 swing check valve manufactured by another company. The tests were designed to evaluate the effects of flow disturbances on (1) valve stability, particularly when partially open; (2) flow rate required to open the valve fully; and (3) the flow coefficient (C_v) of the valve. The flow disturbances evaluated included single and double (out of plane) 90° elbows in various orientations immediately upstream of the check valves. In addition, the effects of a throttled, upstream control valve were simulated with an offset-disc butterfly valve (at various throttle positions) mounted immediately upstream, as well as at five and 11 pipe diameters upstream, of the check valves.

With few exceptions, tests with 10 or more diameters of straight pipe upstream of check valves produced little cause for concern. In water flow tests, visual position indicators usually showed only minor disc "wobble" or very small open-close flutter (e.g., less than 1° total rotation of a tilting disc), even at very low flows and small valve openings. The only conditions that produced severe instability were those involving air flow at very low pressures (below 50 psi or 3.4 bar) and valve openings less than 20%. Such conditions produced significant cyclic motion, with discs bouncing on and off the body seats. In view or the many uncertainties in applying laboratory test results to service conditions. it is considered prudent to avoid operating conditions which produce check valve openings of less than 25%, even in ideal straightpipe applications.

Highlights of the results of the Flowserve tests with flow disturbances are given in the Check Valve Applications Chart (1.2.2) on page 221. The test program clearly showed that upstream flow disturbances do affect check valve performance, but the effect is not always predictable. The magnitude of the effect can vary, depending on the type and even the size of the valve. In some cases, even the direction of the effect (improvement or degradation) varies from valve to valve. Nevertheless, some general observations on the results of these tests are:

• Single and double upstream elbows produced less severe effects on check valve performance than had been expected, and some valves displayed no discernible effects. For example, Edward angle piston-lift check valves exhibited the same stability, lift and flow coefficients (C_v) with upstream elbows as with straight pipe. In tests of other types of valves, upstream elbows produced both beneficial and adverse effect to various degrees.

 In each case where a check valve was tested with a throttled butterfly valve immediately upstream, there were significant effects on performance. The effects included increased disc flutter and reduced valve opening at a given flow, as compared to straight-pipe performance. In some cases, full check valve opening could not be achieved at any flow within the capabilities of the test loop.

Even where full opening was obtained, some valves continued to flutter on and off their

flowserve.com

stops. These effects were worst when the butterfly valve was most severely throttled (smallest opening and highest pressure drop). In the worst cases, the butterfly valve exhibited audible cavitation, but it is not clear whether the adverse effects resulted from simple flow distortion or the two-phase flow stream from the cavitating butterfly valve.

In similar tests with the butterfly valve moved 5 diameters upstream of the check valve (but with similar throttling), the adverse performance effects were decreased significantly but not eliminated. When the butterfly valve was moved 11 diameters upstream of the check valve, normal check valve performance was restored.

The results of these tests were enlightening, but they must be combined with observations based on field experience. For example, while upstream elbows produced less severe effects than expected, there were still adverse effects on some valves. It is difficult to extrapolate a laboratory test to years of service in a plant installation, but Flowserve service files include an interesting and relevant incident. Two size-12 tilting-disc check valves in one plant had hinge-pin failures over a time period of several months after 25 years of service. While this incident might best be cited as a case for more inspection and preventive maintenance, the details of the installation were investigated. It was determined that the flow rates were in a range that should have ensured full disc opening, but the valves were installed close to upstream elbows.

Users of this catalog may wish to refer to EPRI Report No. NP 5479 (see the Sources for Additional Information section of this catalog) for further data on the performance of swing check valves in tests similar to those conducted by Flowserve. The size 4 swing check valve used in the Flowserve test program had a stop positioned to restrict the disc-opening angle to about 38°. This valve opened fully at a relatively low flow and exhibited reasonably stable performance. The tests sponsored by EPRI showed that other swing check valves (with less restrictive stops) exhibited larger amplitudes of flutter than were observed in comparable Flowserve tests.

The following guidelines are based on Flowserve tests and field experience, combined with other published information: • If possible, check valves near flow disturbances should be sized to be fully open, preferably by a good margin, even at the lowest sustained flow rate anticipated for each application. The Flow Performance section of this catalog provides methods for sizing Edward check valves for new installations or for evaluating existing applications. When flow-induced forces load a valve closure element firmly against a stop, it is less likely to flutter and suffer from rapid wear.

Full opening does not guarantee freedom from problems if the margin is not sufficient to provide a firm load against the stop. Equalizers on Edward cast-steel piston-lift check and stop-check valves enhance this margin and provide good stop loading, but flow disturbances may cause other valve discs to bounce on and off their stops. This "tapping" phenomenon may cause faster wear than flutter about a partially open position. For this reason, the minimum sustained flow rate through a tilting-disc check valve near flow disturbances should be about 20% greater than the flow rate required to just achieve full opening.

If it is not possible to ensure full opening of a check valve at minimum flow conditions,

	Single Elbow at	Double Elbows (Out	Throttled Butterfly Valve					
Valve Size and Type	Valve Inlet'	of Plane) at Valve Inlet	At Valve Inlet	5 Diam. Upstream	11 Diam. Upstream			
Size 2, Inclined-Bonnet, Piston-Lift Check	Higher Lift for Same Flow; Disc Flutter at Lower Lifts ²	Higher Lift for Same Flow	NA	NA	NA			
Size 4, Angle, Piston-Lift Check	No Effect	No Effect	NA	NA	NA			
Size 4, 90° Bonnet, Piston-Lift Check	Same, Lower or Higher Flow for Full Lift	No Effect	Disc Flutter and Chatter: Failure to Achieve Full Open	NA	NA			
Size 4, Swing Check	Smaller Opening for Same Flow	Smaller Opening for Same	Larger Opening for Same Flow; Disc	NA	NA			
		Flow	Flutter					
Size 8, Angle, Piston-Lift Check	No Effect	NA	NA	NA	NA			
Size 8, 90° Bonnet, Piston-Lift Check	Disc Flutter at Partial Lift	NA	NA	NA	NA			
Size 10, Inclined-Bonnet, Piston-Lift Check	Same or Lower Lift for Same Flow; Slight Disc Wobble	No Effect	Failure to Achieve Full Open; Disc Flutter and Chatter	Failure to Achieve Full Open	No Effect			
Size 10, Tilting-Disc Check	No Effect	Minor Flutter	Same, Lower or Higher Lift for Same Flow; Disc Flutter and Chatter	Minor Flutter	No Effect			

Table A – Effects of Upstream Flow Disturbances on Check Valve Performance

1: Tests were conducted with single 90° elbows in the horizontal plane and in the vertical plane (with flow both from above and below).

2: One size 2 valve exhibited flutter at lower lifts; another was stable.

at least 25% opening should be ensured. Valves operating at partial opening for significant periods of time should be monitored regularly to determine if there is instability or wear.

• In view of uncertainties associated with long-term effects of flow disturbances, it is recommended that a minimum of 10 diameters of straight pipe be provided between the inlet of a check valve and any upstream flow disturbance (fittings, pumps, control valves, etc.), particularly if calculations indicate that the check valve will not be fully open for a substantial portion of the valve service life. There should be a minimum of 1 to 2 diameters of pipe between the check valve and the nearest downstream flow disturbance.

 In the specific case of upstream elbows, reasonably successful performance should be attainable with 5 diameters of straight pipe between an upstream elbow and a check valve if the valve will not be partially open for a significant portion of its service life. Tests described in EPRI Report No. NP 5479 indicate that elbows installed 5 diameters or more upstream had a negligible effect on swing check valves, and this is expected to be true for other check valve types. Even less straight pipe may be satisfactory, but such close spacing should be reserved for applications with very tight space constraints. More frequent inspection and preventive maintenance should be planned for valves in such installations.

 In the specific case of throttled upstream control valves, the minimum requirement of 10 upstream pipe diameters should be adhered to rigidly. Calculations indicating full valve opening based on straight-pipe tests cannot be trusted to prevent problems, because severe flow disturbances may prevent full opening. Even greater lengths of straight pipe should be considered if the control valve operates with very high pressure drop or significant cavitation.

• Users with existing check valve installations that do not meet these guidelines should plan more frequent inspection and preventive maintenance for such valves. If a check valve is installed close to an upstream control valve that operates with a high-pressure drop, considerations should be given to a change in piping or valve arrangements.

1.3.2 Other Problem Sources

In addition to the fundamentals of check valve selection, sizing and installation, several other potential sources of check valve

problems should be considered in applications engineering or, if necessary, in solving problems with existing installations:

• Piping-System Vibration

In other sections of this guide, it has been noted that check valve damage or performance problems may result from flowinduced flutter or vibration of the closure element. Very similar damage may result from piping-system vibration. Such vibration may originate at pumps, cavitating control valves or other equipment. Check and stop-check valves are susceptible to vibration damage, because the check element is "free floating" when partially open, with only the forces due to fluid flow to balance the moving weight. Impact damage and internal wear may result if the valve body vibrates while internal parts attempt to remain stationary. This condition may be avoided by adequately supporting the piping system near the check valve or by damping vibration at its source. Of course, it is helpful to ensure that the check element opens fully, because flow forces at the discstop help to inhibit relative motion.

• Debris in Line Fluid

Debris in the flow stream can cause damage and performance problems in check and stop-check valves. Debris entrapped between the disc and seat may prevent full closure and lead directly to seat leakage. If hard particles or chips are in the debris, they may damage the seating surfaces and contribute to seat leakage even after they are flushed away. Debris caught between the disc and the body bore of a piston-lift check valve can cause the disc to jam and prevent full opening or closing. To ensure best check valve performance and seat tightness, line fluids should be kept as clean as practical. As noted before, tiltingdisc check valves are particularly resistant to sticking or jamming, but they are no more resistant to seat damage than other types.

• Unsteady (Pulsating) Flow

An unsteady flow rate can lead to rapid check valve damage, particularly if the minimum flow during a cycle is not sufficient to hold the valve fully open. The valve may be damaged just because it does what a check valve is designed to do – open and close in response to changes in flow. As an example, a check valve installed too close to the outlet of a positive displacement pump may attempt to respond to the discharge of each cylinder. If the mean flow during a cycle is low, the disc may bounce off the seat repeatedly in a chattering action. If the mean flow is higher, the disc may bounce on and off the full-open stop. Such pulsating flows may be difficult to predict. For example, a steam leak past the seat of an upstream stop valve may produce a "percolating" action in a line filled with condensate and cause a check valve to cycle. Such problems may only be discovered by preventive maintenance inspections.

• Vapor Pockets in Liquid Piping Systems

Unusual phenomena are sometimes observed in piping systems containing hot water that partially vaporizes downstream of a closed check valve. Vapor pockets at high points may collapse suddenly when the check valve opens (due to the start-up of a pump, for example). This collapse may be remote from the check valve and have no effect on the check valve performance. However, if a vapor pocket exists in the upper part of a piston-lift check or stop-check valve body (above the disc), the collapse may generate unbalanced forces in the direction of disc opening. Since the vapor offers little fluid resistance, rapid acceleration of the disc toward the fully open position may occur. In extreme cases, the disc or bonnet stops may be damaged due to impact. Such thermodynamic quirks are difficult to anticipate when designing a piping system and are sometimes as difficult to diagnose if they occur in an existing installation. Changes in piping arrangements or operating procedures may be necessary if severe problems occur. It is possible that similar problems may occur during lowpressure start-up operations in unvented liquid-piping systems.

1.4 Check Valve Performance

1.4.1 Check Valve Seat Tightness

Edward check valves are factory-tested with water in accordance with MSS SP-61 (Manufacturers Standardization Society of the Valve and Fittings Industry, Inc.) at an overseat pressure of 1.1 times the pressure ratings of the valve. While check valves are allowed leakage rates up to 40 ml/hr per unit of nominal valve size by MSS SP-61, Flowserve allows no more than 5% of this leakage for cast-steel valves and no visible leakage for forged-steel valves. Tilting-disc and forged-steel check valves are then tested again at a reduced pressure with allowable leakage rates which are less than the MSS SP-61 requirements.

Closed check valve closure elements (disc, ball, flapper, etc.) are acted on by a combination of forces produced by gravity, springs (where applicable) and reversed differential pressure. While gravity and spring forces help to position the closure element into the substantially closed position, metal-tometal seating check valves typically rely on pressure forces to produce the seating loads necessary for good seat tightness.

Some metal-seated check valves do not produce good seat tightness at low differential pressures, particularly when the pressure increases from zero. A threshold level of differential pressure is required to produce uniform metal-to-metal contact and restrict leakage to a reasonable rate. An even higher level is required to ensure that a valve meets leakage-rate criteria like those in MSS SP-61. Unfortunately, these levels of differential pressure are difficult to predict; they vary with valve type, condition and orientation (and with cleanliness of line fluid).

Tests of new valves in horizontal lines show that cast-steel inclined-bonnet and 90° bonnet piston-lift check and tilting-disc check valves seal off reasonably well at under 50 psi (3.4 bar) when differential pressure increases from zero. Small forged-steel ball and piston-lift check valves are less consistent, sometimes seating at less than 50 psi (3.4 bar) and sometimes requiring 250 psi (17 bar) or more. This "seating" action often occurs suddenly when the pressure forces shift the closure element into good metalto-metal contact with the body seat, and leakage generally continues to decrease as the pressure is increased. Once seated, most valves seal well if pressure is reduced below the threshold required for initial seating, but the seat tightness with reducing pressure is also difficult to predict.

Some of the Edward check valves described in this catalog have been manufactured with "soft seats" to provide improved seat tightness at low differential pressures. This design feature includes an elastomeric or plastic sealing member on the valve closure element to supplement the basic metal-tometal seating function. Since the design and material selection for these sealing members are very sensitive to pressure, temperature and compatibility with the line fluid, there are no standard, general-purpose, soft-seated valves. Consult Flowserve for further information about specific applications.

Foreign material in the flow medium is a major source of leakage problems in many valves. Because of the limited seating forces in check valves, dirt has a far greater effect on the tightness of these valves than other types. Attention to cleanliness of the fluid is necessary where good check valve seat tightness is desired.

Incorrect sizing or misapplication of a check valve can also lead to leakage problems. Chattering of the closure element on its seat due to insufficient flow or pressure can cause damage to the seat or closure element and result in leakage.

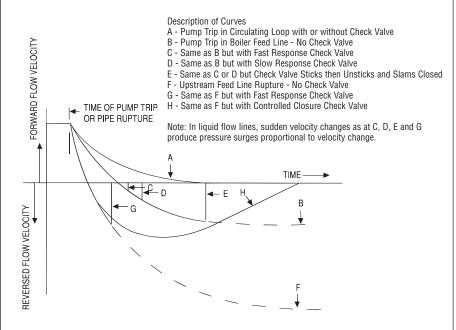
In applications where check valve leakage is a problem, a stop-check valve may offer the solution. Stem load from a handwheel or actuator can provide the necessary seating force independent of pressure. Of course, the stem must be returned to the "open" position to allow flow in the normal direction. Consult Flowserve about applications that are usually sensitive to leakage.

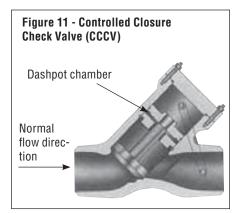
A complete treatment of the subject of pressure surge and waterhammer is beyond the scope of this catalog, but some discussion is provided so that application engineers may appreciate the significance of the problem as it relates to check valves.

1.4.2 Pressure Surge and Waterhammer

One part of the problem is that the terminology or jargon is not consistently used. For example, "waterhammer" or "steam hammer" is sometimes used to describe the implosion that occurs when water enters a hot, low-pressure region and causes a steam void to collapse. This has occurred in systems with a failed check valve, where the water came back from a large reverse flow through the check valve. However, the more common "waterhammer" problem associated with check valves occurs as a result of the check valve closing and suddenly terminating a significant reversed flow velocity. This problem is generally associated with valves handling water or other liquids. A similar pressuresurge phenomenon may be encountered with steam or gas, but it is generally much less serious with a compressible flow medium.

Waterhammer is a pressure surge produced by the deceleration of a liquid column, and it involves pressure waves that travel at close to the velocity of sound through the fluid. It is commonly illustrated in texts by an example involving rapid closure or a valve in a long pipe. For such a case, it can be shown that instantaneous closure of a valve in a room-temperature water line will produce an increase in pressure of about 50 psi (3.4 bar) above the steady-state pressure for every 1 ft/sec (0.30 m/sec) decrease in water velocity. Even if the valve does not close instantaneously, the same pressure increase would develop if the upstream pipe is long enough to prevent reflected pressure waves from reaching the valve before it closes. The waves of increasing pressure that are generated by the closing valve "reflect" from a constantpressure reservoir or vessel, if present in the system, and return to the valve as inverted waves that decrease pressure. A solution to the "textbook problem" is to slow down the valve closure so that the reflected pressure waves attenuate the surge. However, this is not necessarily the best approach in the case of a check valve.


In a check valve, the fluid velocity is forward before the valve starts to close, but it reduces due to some system action (e.g., a pump is shut off). If the velocity reverses before the valve closes, a waterhammer surge will be produced by a conventional check valve that is nearly proportional to the magnitude of the maximum reversed velocity. Figure 10 provides curves illustrating flow transients associated with different types of systems and flow interruptions. The graphs illustrate velocity in the pipe, forward and reverse, versus time on arbitrary scales. The following discussions describe each of the curves:


• **Curve A** illustrates flow coast-down in a simple circulating loop, such as a cooling system, following switch-off of pump power. The momentum of the pump impeller and the fluid keeps the fluid going forward until it is decelerated and finally stopped by friction. There would be no need for a check valve to prevent reverse flow in this system, but one might be included to permit pump maintenance without draining other equipment. In normal operation of this system, the check valve could produce no waterhammer.

• Curve B illustrates an application with a pump feeding a high-pressure system with a fairly large volume. It might represent a boiler feed system of a pump feeding a high reservoir. In this case, assuming similar momentum in the pump and fluid, forward flow continues for a while after the pump is switched off, but the downstream pressure decelerates the flow more rapidly and then reverses its direction. Without a check valve. the reverse flow would increase and stabilize at some value, unless the downstream system pressure declined. In the illustration, the magnitude of the maximum reverse velocity is drawn less than the initial forward velocity, but it might be higher in some systems.

Figure 10 - Flow Reversal Transients

• **Curve C** illustrates what would happen in the system described for Curve B with a fast-response check valve (e.g., a tilting-disc type) installed. As discussed in the Foreword to this guide, an "ideal" check valve would allow no reverse flow and would close exactly at the time the velocity curve passes through zero; there would be no waterhammer. A "real" check valve starts closing while the flow is still forward, but it lags the velocity curve. With fast response, it closes before a high reverse velocity develops, thus minimizing the waterhammer surge.

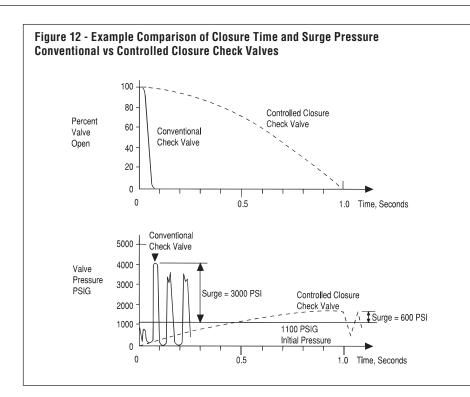
• Curve D illustrates the same system with a check valve that responds just a bit slower. It shows that just a small increase in check valve lag may allow a large increase in re-

verse velocity (and a corresponding increase in waterhammer surge pressure).

• Curve E illustrates an accidental situation that might develop with a severely worn valve or a dirty system. If a check valve in the system described above should stick open, it might allow the reverse velocity to build up so as to approach that which would occur without a check valve. If the reverse flow forces should then overcome the forces that caused the sticking, the resulting valve stem could cause a damaging waterhammer surge.

• **Curve F** illustrates what might happen in the system described for Curve B if there were a major pipe rupture just upstream of the check valve. With free discharge through the open end, the flow would decelerate much more rapidly and, without a check valve, reach a much higher reverse velocity.

• **Curve G** shows the response of the system in Curve F if even a fast-response conventional check valve were to be used. With a flow deceleration this rapid, even a small lag may result in a very high reverse velocity to be arrested and a correspondingly high waterhammer surge.


Fortunately, it is not necessary to design every piping system with a check valve to cope with a pipe rupture. However, this requirement has emerged in some powerplant feedwater piping systems. Flowserve analyses and tests have shown that even the most rapid-responding conventional check valve could produce unacceptable waterhammer surges. This led to the development of the special controlled-closure check valve (CCCV-see Figure 11). Since high reverse velocities are inevitable, the CCCV solves the problem the way the "textbook problem" discussed above is solved—by closing slowly. The CCCV is a piston-lift check valve, but it has an internal dashpot that slows the closing speed of the valve. Closing speed depends on the rate at which water is squeezed out of the dashpot chamber, through flow paths that are sized for each application.

• Curve H illustrates the velocity variation in the pipe-rupture situation described for Curve F, but with a CCCV in the line. In this case, the maximum reverse velocity might even be higher than in Curve G, but it is decelerated back to zero slowly, allowing reflected reducing-pressure waves to minimize the resulting waterhammer surge. Figure 12 provides a comparison between a conventional check valve and a CCCV for a specific pipe-rupture situation. Note that the conventional check valve closes in 0.07 seconds as compared to 1.0 seconds for CCCV. As a result, the conventional check valve produced a surge of 3000 psi (207 bar) while the CCCV limits the surge to 600 psi (41 bar). These characteristics have been demonstrated in tests and can be duplicated in computer-based dynamic analysis simulations of specific valves and systems.

While the CCCV solves a special problem, even this sophisticated product does not fulfill the definition of an ideal check valve. By closing slowly, it allows significant reverse blow before it seats. This characteristic might be undesirable in common pumpdischarge applications, because the reverse flow might have adverse effects on pumps or other equipment. Studies of systems designs sometimes show that fast-response check valves, such as the tilting-disc type, should be retained at pump discharge points where an upstream pipe rupture is unlikely, with CCCVs applied at locations where an upstream pipe rupture could cause serious consequences (e.g., in feedwater lines inside the containment vessel of a nuclear power plant).

In Curves C, D, E, and G of Figure 10, it may be noted that the final terminations of reverse velocity are shown as substantially vertical lines. This does not imply that the valve closes instantaneously. However, tests of

<u>228</u>

conventional check valves show that the reverse velocity in the pipe containing the valve does terminate almost instantaneously. This apparent contradiction may be understood by referring to Figure 13, which illustrates a check valve approaching the closed position with reverse flow (while the illustration depicts a swing check valve, the flow condition discussed here would be much the same with a poppet or disc in a conventional lift check or piston-lift check valve).

The key observation from Figure 13 is that a column of fluid follows the closure element at roughly the same velocity that the closure element has as it approaches its seating

surface in the valve body. While the valve may start to close while the flow velocity is still forward (see Figure 10), an undamped check valve has little effect on pipe flow during closure, and the disc velocity is about the same as the reverse flow velocity in the pipe at the instant just before closure. Since the disc is stopped substantially instantaneously when it makes metal-to-metal contact with the body seat, the reverse flow velocity in the pipe must also be arrested instantaneously. Because of this characteristic, the surge produced by the slam of a conventional check valve cannot be attenuated significantly by reflected reducing-pressure waves, and the surge tends to be relatively insensitive to system pipe lengths.

In some check valve applications, problems have been observed due to a phenomenon that is related to waterhammer but not as widely recognized. When a high-pressure wave is produced on the downstream side of a check valve at closure, a reverse low-pressure wave is produced on the upstream side. If this low-pressure wave reduces the fluid pressure to below the saturation pressure of the fluid, a vapor pocket can form. This can be compared to a tensile failure of the flow stream, and it is sometimes referred to as column separation or column rupture. This vapor pocket is unstable and will collapse quickly, with an implosion that produces a high-pressure "spike." It is possible for this pressure surge to exceed the one initially produced on the downstream of the check valve. Instrumented laboratory tests have shown that the upstream pressure spike sometimes causes the disc to reopen slightly and "bounce" off its seat once or twice. In very rare occasions, sometimes involving systems with multiple check valves, this characteristic has been known to amplify, leading to damaging pipe vibrations.

In summary, waterhammer can produce complex problems in check valve applications. Numerical solutions to these problems require sophisticated computer-based dynamic analyses of both the check valve and the fluid in the piping system. This catalog does not provide the methods for making such analyses; instead, the information in this section is intended to assist fluid-system designers in avoiding the problem.

Users who already have check valves in liquid flow lines that emit loud "slams" when they close should be aware that the noise is probably associated with pressure surges that could lead to fatigue problems in the valve, piping or other components. Where the existing check valve is a piston-lift check or stopcheck valve, the solution could be to add a tilting-disc check valve in series with the existing check valve to gain the advantages of both valve types. Where the existing valve is a swing check valve, replacement by a tiltingdisc check valve might be considered. See the section of this catalog titled Check Valve Types and Typical Uses (1.2.1) for a discussion of the strengths and weaknesses of the various valve types.

1.4.3 Check Valve Accessories and Special Features

Edward check valves can be provided with various accessories that are used to induce check-element motion (exercise) or indicate check-element position. Some of the features available are as follows:

- Visual disc-position indicator for tilting-disc check valve
- Electrical open/close position indicator for tilting-disc or cast-steel piston-lift check valve
- Manual or pneumatic actuator to partially open tilting-disc check valve under zero differential pressure
- CCCVs can be furnished with an injection port that allows the valve disc to be exercised by injecting water into the dashpot chamber when the valve is under a zero differential pressure.

1.4.4 Check/Stop-Check Valve Periodic Inspection and Preventive Maintenance

Periodic inspection and preventive maintenance of check and stop-check valves should be performed to ensure that the valves are operating properly. Bonnet-joint leakage and packing leakage on stop-check valves are easy to detect. Seat leakage of a check or stop-check valve might be indicated by one of the following: a definite pressure loss on the high-pressure side of the valve; continued flow through an inspection drain on the low-pressure side; or, in hot water or steam lines, a downstream pipe that remains hot beyond the usual length of time after valve closure. Leakage of steam through a valve that is badly steam-cut has a whistling or sonorous sound. If the valve is only slightly steam-cut, however, leakage is identified by subdued gurgling or weak popping sounds. These sounds can often be heard through a stethoscope.

Excessive vibration, noise or humming coming from within a piston-lift check or stopcheck valve indicates the possibility that the disc-piston assembly is wedged inside the body. Such sticking may be caused by uneven body-guide rib wear on the downstream side. Sticking rarely occurs with tilting-disc check valves.

"Tapping," "thumping" or "rattling" noises detected from or near a check valve may indicate disc instability or cavitation. Instability could lead to rapid wear and possible valve failure. Audible cavitation is also detrimental. It may produce damage to the valve or the downstream piping. While the noise symptoms may be transmitted through the pipe from other equipment, prompt investigation is required if the check valve's performance is critical to plant reliability. No specific inspection/preventive maintenance schedule can be given to cover all check valves. It is suggested that small valves be sampled by size and type (there may be hundreds in a large installation). Schedules for audit of larger valves should consider the criticality of the valve service. It is wise to open some critical valves for internal inspection at intervals even if no suspicious noises are detected.

Where check valves are installed close to pumps, control valves, pipe fittings or other flow disturbances, they should have more frequent inspection [see the section of this catalog titled Adjacent Flow Disturbances (1.3.1)]. In addition, attention should be given to valves in installations with significant pipe vibration.

Users of this guide may wish to consider non-intrusive check valve monitoring methods as a supplement to periodic visual inspection and measurement of check valve internals. Noise and vibration, acoustic emission, ultrasonic and radiographic methods have been studied and demonstrated. EPRI Report No. NP 5479 provides an evaluation of the state of the art, but users are advised to obtain the most current information available on these emerging technologies.

If problems are found through any of the inspections discussed above, refer to section J: Maintenance.

2. Flow Performance

2.1 Choose the Best Valve Size for Your Service Conditions

The most economical valve is the valve correctly sized for the service flow conditions. Too small a valve will have a high-pressure drop and will incur expensive energy costs in service. Too large a valve wastes money at the time of purchase, and it may require excessive effort or an excessively large and expensive actuator for operation.

Piping-system designers sometimes optimize the size of valves and piping systems to minimize the sum of investment costs and the present value of pumping power costs. While this may not be practical for selection of every valve, it is a goal that should be kept in mind. This catalog provides information necessary to evaluate the various types and sizes of Edward valves for stop (isolation), stop-check and check valve applications.

In the case of stop-check and check valves, another consideration is that an oversized valve may not open completely. Obviously, if a valve is not fully open, the pressure drop will be increased. Also, if the disc operates too close to the seat, unsteady flow may cause flutter that may damage valve seats, discs or guides.

System designers should also address "turndown" if service conditions involve a broad range of flow rates (e.g., high flow in normal operation but low flow during start-up and standby conditions). For these reasons, selection of check valves requires extra steps and care in calculations.

This section includes equations for the calculation of pressure drop, required flow coefficient, flow rate or inlet flow velocity. Procedures are also provided to check and correct for cavitation and flow choking. The equations in this section assume that the fluid is a liquid, a gas or steam. Two-component flow (e.g., slurries, oil-gas mixtures) is not covered by the equations. Consult Flowserve for assistance in evaluating such applications.

Tables in this section contain performance data for all Edward stop, stop-check and check valves. Flow coefficients and cavitation/choked-flow coefficients are given for all fully open Edward valves. In addition, for check and stop-check valves, the tables provide minimum pressure drop for full lift, crack-open pressure drop, and a novel "sizing parameter" that is helpful in selecting the proper valve size for each application.

Caution: Pressure drop, flow rate and check valve lift estimates provided by Edward calculation methods are "best estimate" valves. Calculations are based on standard equations of the Instrument Society of America (ISA), flow rate and fluid data provided by the user, and valve flow coefficients provided by Flowserve.

Flow rate and fluid data are often design or best-estimate values. Actual values may differ from original estimates. Flow and check valve lift coefficients are based on laboratory testing. Valves of each specific type are tested, and results are extended to sizes not tested using model theory. This approach is fundamentally correct, but there is some uncertainty because of geometric variations between valves.

These uncertainties prevent a guarantee with respect to valve pressure drop, flow rate and lift performance, but we expect results of calculations using Flowserve methods to be at least as accurate as comparable calculations involving flow and pressure drop of other piping system components.

2.1.1 Pressure Drop, Sizing and Flow Rate Calculations – Fully Open Valves – All Types

This section is divided into two parts. The Basic Calculations section (2.2) covers most applications where pressure drops are not excessive. This is generally the case in most Edward valve applications, and the simple equations in this section are usually sufficient for most problems.

When the pressure drop across a valve is large compared to the inlet pressure, refer to the Corrections Required with Large Pressure Drops section (2.3). Various fluid effects must be considered to avoid errors due to choked flow of steam or gas—or flashing or cavitation of liquids. While use of these more detailed calculations is not usually required, it is recommended that the simple checks in that section always be made to determine if correction of the results of the Basic Calculations is necessary. With experience, these checks can often be made at a glance.

Note: In preliminary calculations using the following equations, a piping geometry factor, $F_p = 1.0$, may be used, assuming that the valve size is the same as the nominal pipe size. However, if an application involves installing a valve in a larger-sized piping system (or piping with a lower pressure rating than the valve, which will have a larger inside diameter), determine F_n from the Pipe Reducer Coefficients section when final calculations are made.

2.2 Basic Calculations

The following equations apply to FULLY OPEN gate and globe valves of all types. They also apply to stop-check and check valves if the flow is sufficient to open the disc completely. The Check Valve Sizing section (2.4) must be used to determine if a check valve is fully open and to make corrections if it is not.

The following simple methods may be used to calculate pressure drop, required flow coefficient, flow rate or inlet flow velocity for fully open Edward valves in the majority of applications. Always check Basic Calculations against the $\Delta P/p_1$ criteria in Figure 14 to see if corrections are required. This check is automatically made when using the Proprietary Edward Valves Sizing Computer Program.

2.2.1 Pressure Drop

KNOWN:

Flow rate (w or q) Fluid specific gravity (G) or Density (ρ) For water, steam or air, see Figures 21-23

FIND: Valve flow coefficient (C_v) from appropriate table

CALCULATE: Pressure drop (ΔP)

When flow rate and fluid properties are known, determine required coefficients for a specific valve and calculate the pressure drop from the appropriate equation (see Nomenclature table for definition of terms and symbols): Equation 1a (U.S.)

$$\varDelta P = G \left(\frac{q}{F_P C_V}\right)^2$$

Equation 1b (metric)

$$\varDelta P = G \left(\frac{q}{0.865 F_P C_v}\right)^2$$

$$\Delta \mathsf{P} = \frac{1}{\rho} \left(\frac{\mathsf{W}}{\mathbf{63.3F_{P}C_{V}}} \right)^{2}$$

Equation 1d (metric)

$$\Delta P = \frac{1}{\rho} \left(\frac{W}{27.3 F_P C_V} \right)^2$$

If the resulting pressure drop is higher than desired, try a larger valve or a different type with a higher C_{v} . If the pressure drop is lower than necessary for the application, a smaller and more economical valve may be tried.

2.2.2 Required Flow Coefficient

KNOWN:

Flow rate (w or q) Allowable pressure drop (ΔP) Fluid specific gravity (G) or density (ρ) For water, steam or air, see Figures 21-23

CALCULATE: Minimum required valve flow coefficient (C_v)

When the flow, fluid properties and an allowable pressure drop are known, calculate the required valve flow coefficient from the appropriate equation:

Equation 2a (metric)

$$C_{v} = \frac{q}{F_{p}} \sqrt{\frac{G}{\Delta P}}$$

Equation 2b (metric)

$$C_{v} = \frac{q}{0.865F_{p}} \sqrt{\frac{G}{\varDelta P}}$$

Equation 2c (U.S.)

$$C_v = \frac{W}{63.3F_P \sqrt{\Delta P \rho}}$$

Equation 2d (metric)

$$C_v = \frac{W}{27.3F_P \sqrt{\varDelta P\rho}}$$

Results of these calculations may be used to select a valve with a valve flow coefficient that meets the required flow and pressuredrop criteria. Of course, valve selection also required prior determination of the right valve type and pressure class, using other sections of this catalog. The tabulated C_v of the selected valve should then be used in the appropriate pressure drop or flow-rate equation to evaluate actual valve performance. At this stage, the checks described in section

Nomenclature (metric units in parentheses)

Cv	Valve flow coefficient
d	Valve inlet diameter, inches (mm)
F	Liquid pressure recovery coefficient, dimensionless
Fp	Piping geometry factor, dimensionless
G	Liquid specific gravity, dimensionless
Gv	Gas compressibility coefficient, dimensionless
k	Ratio of specific heats, dimensionless
K	Incipient cavitation coefficient, dimensionless
ΔP	Valve pressure drop, psi (bar)
ΔP _{co}	Valve crack-open pressure drop, psi (bar)
ΔP_{FL}	Minimum valve pressure drop for full lift-psi (bar)
p ₁	Valve inlet pressure, psia (bar, abs)
p _v	Liquid vapor pressure at valve inlet temperature-psia (bar, abs)
q	Volumetric flow rate, U.S. gpm (m ³ /hr)

Ratio of sizing parameter to sizing parameter for full lift									
Ratio of valve pressure drop to minimum pressure drop for full lift									
Pressure drop ratio (gas or steam)									
Pressure drop ratio (liquids)									
Valve sizing parameter									
Valve sizing parameter for full lift									
Fluid velocity at valve inlet, ft/sec (m/sec)									
Weight flow rate-lb/hr (kg/hr)									
Terminal value of $\Delta P/p_1$ for choked gas or steam flow, dimensionless									
Gas expansion factor, dimensionless									
Weight density of fluid at valve inlet conditions, lb/ft ³ (kg/m ³)									
Conversion factors are provided in the Conversion Factors section at the end of this catalog.									

2.2 should be made to correct for effects of large pressure drops if required.

As discussed below under flow-rate calculations, the flow-coefficient equations assume that the allowable pressure drop is available for the valve. Piping pressure drop should be addressed separately.

Caution: In applications of stop-check or check valves, the results of these equations will apply only if the valve is fully open. Always use the methods given in the Check Valve Sizing section (2.4) to ensure that the valve will be fully open or to make appropriate corrections.

2.2.3 Flow Rate

KNOWN:

Pressure drop (ΔP) Fluid specific gravity (G) or density (ρ) For water, steam or air, see Figures 21-23

FIND: Valve flow coefficient (C_v) from appropriate table

CALCULATE: Flow rate (w or q)

When the fluid properties and an allowable pressure drop are known, determine required coefficients for a specific valve and calculate the flow rate from the appropriate equation:

Equation 3a (U.S.)

$$q = F_P C_v \sqrt{\frac{\Delta P}{G}}$$

Equation 3b (metric)

$$q = 0.865 F_P C_v \sqrt{\frac{\varDelta P}{G}}$$

Equation 3c (U.S.)

 $w = 63.3F_P C_v \sqrt{\Delta P \rho}$

Equation 3d (metric)

 $w = 27.3F_PC_v \sqrt{\Delta P \rho}$

2.2.4 Inlet Flow Velocity

KNOWN:

Flow rate (w or q) Fluid specific gravity (G) or density (p) For water, steam or air, see Figures 21-23

FIND: Valve inlet diameter (d) from appropriate table

CALCULATE: Fluid velocity at valve inlet (V)

While not normally required for valve sizing and selection, the fluid velocity at the valve inlet may be calculated from the appropriate equation:

$$V = \frac{0.409q}{d^2}$$

Equation 4b (metric)

$$V = \frac{354q}{d^2}$$

Equation 4c (U.S.)

$$V = \frac{0.0509w}{\rho d^2}$$

Equation 4d (metric)

$$V = \frac{354W}{\rho d^2}$$

These valve flow-rate calculations are used less frequently than pressure drop and flowcoefficient calculations, but they are useful in some cases.

Caution: These equations assume that the pressure drop used for the calculation is available for the valve. In many piping systems with Edward Valves, flow is limited by pressure drop in pipe and fittings, so these equations should not be used as a substitute for piping calculations.

Use of these flow-rate equations for stopcheck and check valves is not recommended unless the allowable pressure drop is relatively high (e.g., over about 10 psi or 0.7 bar). At lower values of ΔP , two or more different flow rates might exist, depending on whether or not the disc is fully open. Flow would vary depending on whether the pressure drop increased or decreased to reach the specified value.

Note: If a specific pipe inside diameter is known, that diameter may be used as the "d" value in the equation above to calculate the fluid velocity in the upstream pipe.

2.3 Corrections Required with Large Pressure Drops

While most Edward valves are used in relatively high-pressure systems and are usually sized to produce low-pressure drop at normal flow rates, care is necessary to avoid errors (which may be serious in some cases) due to flow "choking" (or near-choking). Problems arise most often at off-design flow conditions that exist only during plant start-up, shutdown or standby operation.

Since steam and gas are compressible fluids, choking (or near-choking) may occur due to fluid expansion, which causes the fluid velocity to approach or reach the speed of sound in reduced-area regions. While liquids are normally considered to be incompressible fluids, choking may also occur with liquid flow due to cavitation or flashing. In each case, simple calculations can be made to determine if a problem exists. Relatively simple calculations are required to correct for these effects. In some cases, these calculations may require a change in the size of type of valve required for a specific application.

The flow parameters K_1 , F_1 and x_T in the valve data tables assume that the valve is installed in pipe of the same nominal size. This is a fairly good assumption for preliminary calculations, but refer to the Pipe Reducer Coefficients section if there is a mismatch between valve and pipe diameters (also see instructions relative to F_p calculations in section 2.2) and make the appropriate corrections when final calculations are made.

Note: Because large pressure drop problems are not encountered frequently, equations are presented in terms of weight flow rate (w) and density (ρ) only. See the Conversion of Measurement Units section for converting other units of flow rate to weight flow rate.

2.3.1 Gas and Steam Flow

2.3.1.1 Pressure Drop

To determine if corrections are needed for compressible flow effects, use the data from the Basic Calculations to determine the ratio of the calculated pressure drop to the absolute upstream pressure:

Equation 5

$$R_1 = \frac{\Delta P}{p_1}$$

If the ratio R_1 is less than the values in Figure 14, the results of the Basic Calculations will usually be sufficiently accurate, and further calculations are unnecessary.

Figure 14 – Maximum $\Delta P/P_1$ for use of Basic Calculations Without Correction

Valve Type	Max. ∆P/P1
Gate	0.01
Inclined Bonnet Globe	
Angle	0.02
Tilting-Disc Check	
90° Bonnet Globe	0.05

If the pressure-drop ratio R_1 exceeds that tabulated for the valve type under evaluation, the procedure described below should be used to check and correct for possible flow choking or near-choking.

(1) Calculate the gas compressibility coefficient:

Equation 6 (U.S. or metric)

$$G_{y} = \frac{0.467}{kX_{T}} \left(\frac{\Delta P}{p_{1}} \right)$$

Note: The ΔP in this equation is the uncorrected value from the Basic Calculations. Values of x_r are given in valve data tables, and values of k are given in Figure 21.

(2) The next step depends on the value of G_y determined in equation 6:

• If $G_y < 0.148$, the flow is not fully choked. Read the value of Y from Figure 15 and calculate the corrected pressure drop:

Equation 7 (U.S. or metric)

$$\Delta P_{c} = \frac{\Delta P}{Y^{2}}$$

<u>234</u>

• If $G_y \ge 0.148$, the *flow is choked*. The desired flow cannot be achieved at the specified upstream pressure and will be limited to the choked flow rate given by:

Figure 15

Equation 8a (U.S.)

 $W_{choked} = 35.67 F_P C_V \sqrt{k x_T p_1 \rho}$

Equation 8b (metric)

 $W_{choked} = 15.4 F_P C_V \sqrt{k x_T p_1 \rho}$

• When flow is choked, the actual pressure drop cannot be calculated using valve flow calculations alone. It can be any valve greater than the following minimum value for choked flow:

Equation 9 (U.S. or metric)

 $\Delta P_{\text{min. choked}} \ge 0.714 \text{kx}_{\text{T}} \text{p}_{1}$

• The only way to determine the pressure downstream of a valve with choked flow is to calculate the pressure required to force the choked flow rate through the downstream piping. This may be done with piping calculations (not covered by this catalog).

2.3.1.2 Flow Rate

When calculating the flow rate through a valve, the actual pressure drop is known, but the flow may be reduced by choking or near-choking.

To check for high pressure-drop effects, calculate R_1 , the ratio of pressure drop to absolute upstream pressure (see equation 5 on previous page) noting that the pressure drop in this case is the known value.

(1) Flow rates determined using the Basic Calculations are sufficiently accurate if R_1 is less than about twice the value tabulated in Figure 14 for the applicable valve type (higher because actual pressure drop is used in the ratio). In this case, no correction is necessary.

(2) When corrections for higher values of R1 are required, calculate the gas expansion factor directly from:

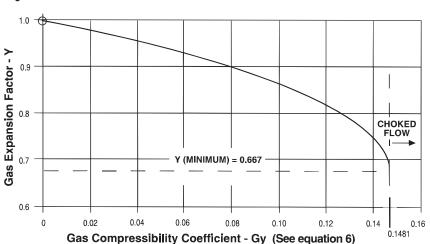
Equation 10 (U.S. or metric)

$$Y = 1 - 0.467 \left(\frac{\Delta P/p_1}{kx_T}\right)$$

(3) The calculation method to determine the flow rate depends on the calculated value of Y from equation (10):

• If Y is greater than 0.667 (but less that 1), the flow is not fully choked. Calculate the corrected flow rate as follows:

Equation 11 (U.S. or metric)


 $W_c = YW$

• If Y is equal to or less than 0.667, the valve flow is choked, and the results of the Basic Calculations are invalid. The actual flow rate may be calculated from the equation for w_{choked} [(8a) or (8b)] above.

Caution: Choked or near-choked flow conditions may produce significant flow-induced noise and vibration. Prolonged operation with flow rates in this region may also cause erosion damage within a valve or in downstream piping, particularly if the flow condition involve "wet" steam. Edward valves tolerate these conditions well in services involving limited time periods during plant start-up, shutdown, etc., but consult Flowserve about applications involving long exposure to such conditions.

2.3.2 Liquid Flow – Cavitation and Flashing

The fluid pressure in high-velocity regions within a valve may be much lower than either

the upstream pressure or the downstream pressure. If the pressure within a valve falls below the vapor pressure (p_v) of the liquid, vapor bubbles or cavities may form in the flow stream. Cavitation, flashing and choking may occur. Use the equations and procedures in this section to evaluate these phenomena.

Cavitation and flashing are closely related, and they may be evaluated by calculating a pressure-drop ratio that is slightly different from that used for gas or steam:

Equation 12

$$\mathsf{R}_1 = \frac{\varDelta \mathsf{P}}{(\mathsf{p}_1 - \mathsf{p}_v)}$$

To evaluate a particular valve and application, find values of K_i and F_L from the appropriate valve-data table, find P_V values for common liquids given in Figure 25, calculate R_2 , and perform the following checks:

(1) Cavitation – the sudden and sometimes violent coalescence of the cavities back to the liquid state occurs when the downstream pressure (within the valve or in the downstream pipe) recovers to above the vapor pressure.

• If $R_2 < K_i$, there should be no significant cavitation or effect on flow or pressure drop. Results of the Basic Calculations require no correction.

• If $R_2 > K_1$, cavitation begins. If the ratio is only slightly greater than K_1 , it may be detected as an intermittent "ticking" noise near the valve outlet, although pipe insulation may muffle this sound. This stage of cavitation is usually related to tiny vapor cavities that form near the center of vortices in the flow stream, and it generally produces neither damage nor effects on flow characteristics. However, as the pressure drop ratio R_2 increases, the noise progresses to a "shh," then a "roar."

• If $R_2 > (K_i + FL_2)/2$, approximately, larger vapor cavities develop and the risk of cavitation damage (pitting) in the valve or downstream pipe may be a concern if this flow condition is sustained for significant periods of time. Noise may also pose a problem. Still, at this stage, there is usually no significant effect on valve flow characteristics. Results of the Basic Calculations require no correction.

As the pressure-drop ratio increases beyond this point, some valves suffer slight reductions in their C_v values, but there is no practical way of correcting pressure drop or flow calculations for this effect. Vibration

and noise increase, ultimately sounding like "rocks and gravel" bouncing in the pipe at about the point where flow becomes choked.

(2) Flashing – the persistence of vapor cavities downstream of the valve occurs when the pressure downstream of the valve remains below the vapor pressure.

• If R₂ > 1, flashing occurs, and the flow is choked due to vapor cavities in the flow stream.

(3) Liquid choking – A slightly different ratio may be used to predict the minimum pressure drop at choked flow conditions. Choking occurs due to vapor cavities near the minimum-area region in the flow stream when:

Equation 13

$$\frac{\varDelta P}{(p_1 - 0.7p_v)} \ge F_L^2$$

Thus, the minimum pressure drop that will produce choked liquid flow is given by:

Equation 14

$$\Delta P \ge F_{L}^{2}(p_{1}-0.7p_{v})$$

Note that flow may be choked by either sever cavitation or flashing.

2.3.2.1 Predicting Choked Flow Rate

If the result of a Basic Calculation to determine pressure drop exceeds the value determined from equation (13), the Basic Calculation is invalid. the flow used for input cannot be obtained at the specified upstream pressure and temperature. In such a case, of if it is necessary to calculate liquid flow rate through a valve with high-pressure drop, the choked flow rate at specified conditions may be calculated from:

Equation 15a (U.S.)

$$W_{choked} = 63.3 F_P C_V F_L \sqrt{
ho(p_1 - 0.7 p_V)}$$

Equation 15b (metric)

$$W_{choked} = 27.3 F_P C_V F_L \sqrt{\rho(p_1 - 0.7 p_V)}$$

When flow is choked due to either cavitating or flashing flow, the actual pressure drop cannot be determined from valve calculations. It may be any value greater than the minimum value for choked flow [equation (14)]. As in the case of choked gas or steam flow, the pressure downstream of a valve must be determined by calculating the pressure required to force the choked flow through the downstream piping. This may be done with piping calculations (not covered by this catalog).

• If the pressure drop from a Basic Calculation was used to determine flow rate, and the pressure drop exceeds the pressure drop of choked flow, the result is invalid. The corrected flow rate may be calculated from equation (15a) or (15b) above.

2.4 Check Valve Sizing

The most important difference between check (including stop-check) valves and stop valves, from a flow performance standpoint, is that the check valve disc is opened only by dynamic forces due to fluid flow. The preceding calculation methods for flow and pressure drop are valid only if it can be shown that the valve is fully open.

The primary purpose of this section is to provide methods to predict check valve disc opening and to make corrections to pressuredrop calculations if the valve is not fully open. These methods are particularly applicable to sizing valves for new installations, but they are also useful for evaluation of performance of existing valves.

In selecting a stop-check or check valve for a new installation, the first steps require selecting a proper type and pressure class. The Stop and Check Valve Applications Guide section of this catalog should be reviewed carefully when the type is selected, noting advantages and disadvantages of each type and considering how they relate to the requirements of the installation. Other sections of this catalog provide pressure ratings to permit selection of the required pressure class.

2.4.1 Sizing Parameter

The first step in evaluating a stop-check or check valve application is to determine the Sizing Parameter based on the system flow rate and fluid properties:

Equation 16 (U.S. or metric)

$$SP = \frac{W}{\sqrt{\rho}}$$

Tables in this section provide a Sizing Parameter for full lift (SP_{FL}) for each Edward stop-check and check valve. The amount of opening of any check valve and its effect

on pressure drop can be checked simply as follows:

 If SP_{FL} < SP, the valve is fully open. Pressure drop may be calculated using the equations given previously for fully open valves (including corrections for large pressure drops if required).

• IF SP_{FL} > SP, the valve is not fully open. A smaller size valve or another type should be selected if possible to ensure full opening. If that is not feasible, three additional steps are required to evaluate the opening and pressure drop of the valve under the specified service conditions.

Note: EPRI Report No. NP 5479 (Application Guideline 2.1) uses a "C" factor to calculate the minimum flow velocity required to fully open a check valve. The sizing procedures in this catalog do not employ the "C" factor, but values are given in the valve data tables for readers who prefer to use the EPRI methods. Since the EPRI methods are based on velocity, a flow area is required as a basis. Valve Inlet Diameters presented in data tables are the basis for correlation between flow rate and velocity.

2.4.2 Calculations for Check Valves Less Than Fully Open

If the preceding evaluation revealed an incompletely open check valve, perform the following additional calculations:

Calculate the flow-rate ratio:

Equation 17 (U.S. or metric)

$$R_F = \frac{SP}{SP_{FL}}$$

Determine the disc operating position:

Using the R_F value calculated above, determine the valve operating position from Figure 15 (forged-steel valves) or Figures 16-19 (cast-steel valves). Performance curve numbers for individual cast-steel stop-check and check valves are given in the tabulations with other coefficients. Evaluate the acceptability of the operating position based on recommendations in the Check Valve Applications Guide and in the specific sizing guidelines below.

Calculate the pressure drop:

Again using the R_F value calculated above, determine the pressure drop ratio R_P from Figures 15-19, and calculate the valve pressure drop at the partially open position:

Equation 18 (U.S. or metric)

 $\Delta P = R_P \Delta P_{FL}$

<u>236</u>

Values for ΔP_{FL} for all stop-check and check valves are given in Valve Tables 1 to 5 with other coefficients.

Note: The values of the various valve coefficients given in the tabulations are based on testing of a substantial number of valves. Most are applicable to any line fluid, but those involving check valve lift are influenced by buoyancy. Tabulated values are based on reference test conditions with room-temperature water. $SP_{\rm R_i}$ and $\Delta P_{\rm R_i}$ are slightly higher in applications involving lower-density line fluids. Considering the expected accuracy of these calculations, the following corrections may be considered:

• For water at any temperature and other common liquids – No correction required.

• For steam, air and other common gases at normal operating pressures and temperatures – Increase SP_{FL} by 7% and increase ΔP_{FL} by 14%.

2.4.3 Sizing Guidelines

Considering the recommendations in the Check Valve Applications Guide section of this catalog and the calculation methods described above, the following specific steps are recommended for sizing check valves for optimum performance and service life (it is assumed that the check valve type and pressure class have already been selected before starting this procedure):

(1) Constant flow rate – If the application involves a substantially constant flow rate during all operating conditions, the check valve should be sized to be fully open. This may be accomplished by the following procedure:

• Calculate the check valve sizing parameter (SP) for the application from equation (15). Values of density for water, steam, and air are available in Figures 21-23.

If the flow rate is not given in lb/hr (or kg/hr), refer to the Conversion of Measurement Units section of this catalog to make the necessary calculation.

• Select the valve size with the next smaller SP_{FL} value from valve data tables (Tables 1-5). Make note of the C_v, ΔP_{co} , ΔP_{FL} , K_i, F_L and x_r values for use in later calculations.

Note: Preferably, there should be a good margin between SP and SP_{FL} to be sure the valve will be fully open. In the specific case of tilting-disc check valves, it is recommended that SP_{FL} be less than 0.83 (SP) to be sure that the disc is fully loaded against its stop (particularly if it is close to a flow disturbance).

• Calculate the pressure drop using the Basic Calculation method in equation (1) and the Cxx value of the valve size selected above. Make the simple checks described above in section 2.2 (Corrections Required With Large Pressure Drops), and make appropriate corrections in necessary (this is rarely needed for a valve sized for constant flow rate, but the check is desirable).

• Evaluate the pressure drop. If it is too high, a larger size or another check valve type should be tried. If it is lower than necessary for the application, a smaller and more economical valve (with a lower SP_{FL}) may be evaluated with assurance that it would also be fully open.

• Evaluate the crack-open pressure drop (ΔP_{c0}) to be certain that the system head available at the initiation of flow will initiate valve opening. Note that, for some valves, the crack-open pressure drop exceeds the pressure drop for full lift. Preceding calculations might indicate no problem, but it is possible that a valve might not open at all in a low-head application (e.g., gravity flow).

(2) Variable flow rate – If the application involves check valve operation over a range of flow rates, additional calculations are necessary to ensure satisfactory, stable performance at the lowest flow rate without causing excessive pressure drop at the maximum flow condition. This required careful evaluation of specific system operating conditions (e.g., are the minimum and maximum flow rates normal operating conditions or infrequent conditions that occur only during start-up or emergency conditions?).

The following options should be considered in selecting the best stop-check or check valve size for variable flow applications:

• The best method, if practical, is to size the valve to be fully open at the minimum flow condition. This may be done by following the first two steps listed above for the constant flow-rate case, but using the minimum flow rate in the sizing parameter (SP) calculation.

The only difference is that the pressure-drop calculations and evaluations in the third and fourth steps must be repeated at normal and maximum flow rates. If the selected valve size is fully open at the minimum flow rate and has an acceptable pressure drop at the maximum flow condition, it should give good overall performance.

• Sometimes a change in valve type provides the best cost-effective solution for variable-flow applications (e.g., use a smaller Flite-Flow stop-check or check valve instead of a 90° bonnet type to provide full lift at the minimum flow condition, but a high C_v for low pressure drop at maximum flow).

• Operation at less than full lift may have to be considered.

(3) Operation at less than full lift – "High Turndown" applications sometimes exist on boilers and other process systems that must swing through periodic flow changes from start-up, to standby, to maximum, and back again. In such cases, calculations may not reveal any single valve that will offer a satisfactory compromise ensuring full lift and an acceptable pressure drop at both minimum and maximum flow conditions.

It may be acceptable to permit a check valve to operate at less than fully open at the minimum flow condition if such operation is infrequent or not expected to be sustained continuously for long periods. A valve may be sized by following the methods above using the lowest expected normal sustained flow rate in the sizing parameter (SP) calculation. Pressure drop at normal and maximum flow rates should then be calculated and evaluated.

The acceptability of valve operation at the minimum flow condition should be evaluated as follows:

• Calculate the sizing parameter (SP) at the minimum flow rate and the flow-rate ratio R_F from equation (17). The valve operating position (% open) should be determined from the proper performance curve (Figures 15-19).

Caution: Check valve operation at less than 25% opening is not recommended. Any check valve that operates for sustained periods at partial openings should be monitored or inspected periodically for evidence of instability or wear.

• If the minimum operating position is considered satisfactory, the pressure drop at the minimum flow condition may be calculated from equation (18), using the pressure-drop ratio (R_p) determined from the proper performance curve.

(4) Alternatives for high turndown applications – If the preceding steps show that the range of flow rates is too large for any single standard check valve, consult Flowserve. Several alternatives may be considered:

• Either 90° bonnet or angle-type stop-check or piston-lift check valves may be furnished with a special disc with an extended "skirt" as illustrated in Figure 15A. This skirt increases flow resistance at low flow rates, producing additional lifting force to help prevent operation at small openings.

Of course, the skirt also reduces the $C_{\rm v}$ of the valve somewhat when it is fully open and increases pressure drop at maximum

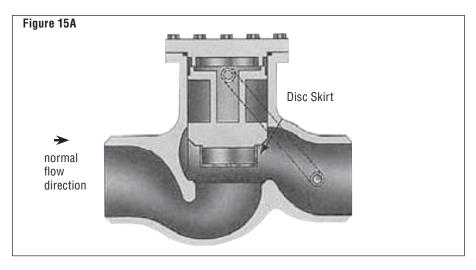
flow. Nevertheless, a special disc sometimes solves difficult high turndown problems. A special disc also permits solution of some problems with existing valves that are "oversized."

• A stop-check valve may be used with the stem lifted just enough to provide a positive stop for the disc at very low flows (e.g., short-term start-up conditions). The stem should be lifted with increasing flow rate to maintain the disc-stopping action while preventing excessive pressure drop. At normal flow rates, the stem can be lifted to its fully open position, permitting normal check valve function. The stem may be actuated manually for infrequent start-up operations, or a motor actuator may be furnished for convenience if large flow rate variations are expected to be frequent.

Caution: This arrangement could produce cavitation or flow-choking problems if the flow rate is increased substantially without lifting the valve stem to compensate.

• A small check or stop-check valve may be installed in parallel with a larger stop-check valve. The smaller valve may be sized for the minimum flow condition, and the larger stopcheck may be held closed with the stem until the flow is sufficient to ensurev adequate lift. If necessary, the stem on the larger valve may be opened gradually with increasing flow to maintain disc-stopping action as in the example above. The smaller valve may be allowed to remain open at higher flow rates or, if a stop-check type is used, it may be closed if preferred. Either or both valves may be manually actuated or furnished with a motor actuator for convenience.

2.5 Pipe Reducer Coefficient


The equations in the Flow Performance section of this catalog use a piping geometry factor, F_p , to account for the effect of pipe reducers attached directly to the valve. This permits the valve and pipe reducers to be treated as an assembly, i.e., F_pC_v is the flow coefficient of the valve/pipe reducer combination. Then, the pressure drop in the flow equations is the pressure drop of the assembly.

This method is also applicable when valves are furnished with oversized ends to fit larger diameter pipe. It should also be used to evaluate line-size valves used in pipe with a lower pressure rating than the valve, because such pipe may have less wall thickness and a larger inside diameter than the valve inlet diameter given in the valve data tabulations.

This section provides equations for calculation of the piping geometry factor, F_p , which should be used even in Basic Calculations when there is a significant difference between the pipe diameter and valve inlet diameter (d).

In addition, other coefficients (K_{1}, F_{L}, x_{T}) are affected by the presence of pipe reducers. Equations are also provided for correction of these terms, which are required only when evaluating significant valve-to-pipe diameter mismatch.

Note: These equations apply only where the valve diameter is less than the connecting pipe diameter.

2.5.1 Pipe Geometry Factor

Calculate upstream loss coefficient:

$$K_1 = 0.5 \left[1 - \left(\frac{d}{D_1} \right)^2 \right]^2$$

Calculate downstream loss coefficient:

$$\mathbf{K}_{2} = \left[\mathbf{1} - \left(\frac{\mathbf{d}}{\mathsf{D}_{2}}\right)^{2}\right]^{2}$$

Summation:

Equation 1-3 (U.S. or metric)

$$\sum K = K_1 + K_2$$

Equation 1-4a (U.S.)

$$F_{P} = \sqrt{\frac{1}{1 + \frac{\sum K}{890} \left(\frac{C_{y}}{d^{2}}\right)^{2}}}$$

Equation 1-4b (metric)

$$F_{P} = \sqrt{\frac{1}{1 + 486\Sigma \, K \left(\frac{C_{y}}{d^{2}}\right)^{2}}}$$

Note: If D_i and D_e are not the same, use of F_p calculated in this manner accounts for energy losses associated with flow contraction and expansion, and the pressure drop calculated using this factor represents energy loss. Bernoulli effects may cuase a different static pressure change between upstream and downstream pipes.

Nomenclature

valve flow coefficient. See Valve Reference Data. C_v d valve-end inside diameter, inches, (mm). See Valve Reference Data. D, inside diameter of upstream pipe, inches, (mm). See Pipe Data Section. D., inside diameter of downstream pipe, inches, (mm). See Pipe Data Section. F, liquid-pressure recovery coefficient, dimensionless* F piping-geometry factor, dimensionless K, pressure-loss coefficient for inlet reducer, dimensionless pressure-loss coefficient for outlet reducer, dimensionless Κ, K_{B1} pressure change (Bernoulli) coefficient for inlet reducer, dimensionless ΣK $K_1 + K_2$, dimensionless incipient-cavitation coefficient, dimensionless* K terminal value of $\Delta P/p$, for choked gas or steam flow, dimensionless Х

*Double subscripts (e.g. K_{μ}) represent values corrected for effects of pipe reducers.

<u>238</u>

2.5.2 Other Coefficients

Correction of values of K_1 , F_L and x_T requires an initial calculation of a Bernoulli coefficient to account for static pressure change in the inlet reducer:

Equation 1-5 (U.S. or metric)

$$K_{\scriptscriptstyle B1} = 1 - \left(\frac{d}{D_1}\right)$$

Then, corrected values of each coefficient may be calculated, using the corresponding value from valve data tables as input:

Equation 1-6a (U.S.)

$$K_{ii} = \frac{1}{F_{P}^{2} \left[\frac{1}{K_{i}} + \left(\frac{K_{1} + K_{B1}}{890}\right) \left(\frac{C_{V}}{d^{2}}\right)^{2}\right]}$$

Equation 1-6b (metric)

$$K_{ii} = \frac{1}{F_P^2 \left[\frac{1}{K_i} + 468(K_1 + K_{B1}) \left(\frac{C_V}{d^2}\right)^2\right]}$$

Equation 1-7a (U.S.)

$$F_{LL} = \frac{1}{F_{P} \sqrt{\frac{1}{F_{L}^{2}} + \left(\frac{K_{1} + K_{B1}}{890}\right) \left(\frac{C_{V}}{d^{2}}\right)^{2}}}$$

Equation 1-7b (metric)

$$F_{LL} = \frac{1}{F_{P} \sqrt{\frac{1}{F_{L}^{2}} + 468(K_{1} + K_{B1}) \left(\frac{C_{V}}{d^{2}}\right)^{2}}}$$

Equation 1-8a (U.S.)

$$x_{\tau\tau} = \frac{x_{\tau}}{F_{P}^{2} \left[1 + \frac{x_{\tau} (K_{1} + K_{B1})}{1000} \left(\frac{C_{V}}{d^{2}}\right)^{2}\right]}$$

Equation 1-8b (metric)

$$x_{\text{TT}} = \frac{x_{\text{T}}}{F_{\text{P}}^{2} \left[1 + 416 x_{\text{T}} \left(K_{1} + K_{\text{B1}} \right) \left(\frac{C_{\text{V}}}{d^{2}} \right)^{2} \right]}$$

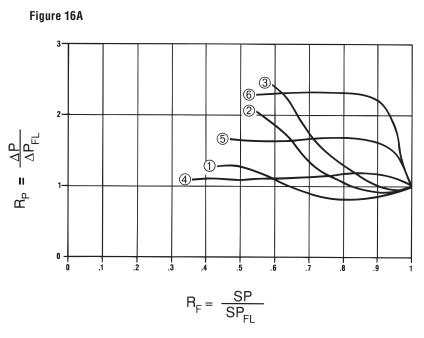
where: K_i , F_L and x_T are values from valve data tables; K_{ii} , F_{LL} and x_{TT} are corrected values for valve/reducer assembly.

Table 1 – Edward Cast Steel Globe Flow Coefficients

NPS

		icients		31661	aione		Black numerals are in U.S. customary units or dimension Colored numerals are in metric							
Si	ze	Stop and Check Valves				/alves		Check Valve Coeff	icients		Perf.			
PS	DN	IC. F. X. K.		b	٨Ρ	٨Ρ	SP	С	Curves					

Class 900 (PN 150) Figure No. 4016/4016Y, 4316Y Stop valves, 4006/4006Y, 4306Y Stop-Check valves, 4094/4094Y, 4394Y Check valves															
3	80	110	0.96	0.60		2.87	72.9	0.92	0.063	1.5	0.10	8510	964	53	4
4	100	200	0.97	0.60	0.10	3.87	98.2	1.3	0.090	2.3	0.16	19,500	2210	66	5
5	125	305	0.97	0.61		4.75	121	1.3	0.092	2.5	0.18	30,600	3470	69	4
6	150	530	0.81	0.42		5.75	146	1.2	0.085	1.5	0.10	41,500	4700	64	3
8	200	910	0.81	0.42]	7.50	191	1.3	0.093	1.5	0.10	69,500	7870	63	2
10	250	1400	0.81	0.42	0.07	9.37	238	1.6	0.11	1.8	0.12	119,000	13,500	69	1
12	300	2000	0.81	0.42		11.12	282	1.8	0.12	2.1	0.14	182,000	20,600	75	2
14	350	2400	0.81	0.42		12.25	311	1.6	0.11	1.9	0.13	211,000	23,900	72	2


Class 1500 (PN 260) Figure No. 2016, 7516/7516Y Stop valves, 2006Y, 7506/7506Y Stop-Check valves, 2094Y, 7594/7594Y Check valves

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.5	65	72	0.92	0.54		2.25	57.2	0.76	0.052	1.3	0.091	5230	592	53	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	80	110	0.89	0.51	0.08	2.75	69.9	0.92	0.063	1.5	0.10	8510	964	57	4
6 150 465 0.80 0.42 8 200 790 0.81 0.42 7.00 178 1.6 0.11 1.4 0.097 59,300 6720 62 1 8.75 222 1.5 0.10 1.4 0.100 93,900 10,600 63 1	4	100	200	0.85	0.47		3.62	91.9	1.3	0.088	2.3	0.16	19,300	2190	75	5
8 200 790 0.81 0.42 10 250 1250 0.81 0.42 8.75 222 1.5 0.10 1.4 0.097 59,300 6720 62 1	5	125	300	0.83	0.44		4.37	111	1.2	0.080	2.2	0.15	28,600	3240	76	4
10 250 1250 0.81 0.42 0.07 8.75 222 1.5 0.10 1.4 0.100 93,900 10,600 63 1	6	150	465	0.80	0.42		5.37	136	1.4	0.094	1.4	0.096	35,000	3960	62	2
<u>10 250 1250 0.81 0.42</u> 8.75 222 1.5 0.10 1.4 0.100 93,900 10,600 63 1	8	200	790	0.81	0.42	0.07	7.00	178	1.6	0.11	1.4	0.097	59,300	6720	62	1
	10	250	1250	0.81	0.42	0.07	8.75	222	1.5	0.10	1.4	0.100	93,900	10,600	63	1
12 300 1750 0.81 0.42 10.37 263 1.5 0.11 1.8 0.12 147,000 16,600 70 3	12	300	1750	0.81	0.42		10.37	263	1.5	0.11	1.8	0.12	147,000	16,600	70	3
14 350 2100 0.81 0.42 11.37 289 1.7 0.12 2.1 0.14 190,000 21,500 75 3	14	350	2100	0.81	0.42		11.37	289	1.7	0.12	2.1	0.14	190,000	21,500	75	3

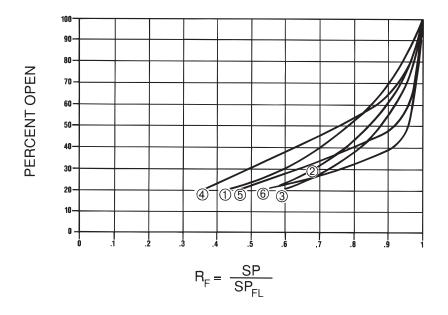

See note following section 2.4.1 for discussion of C factor.

Figure 16 – Edward Cast Steel Globe Piston Lift Check Valve Performance Curves

Black numerals are in U.S. customary units or dimensionless

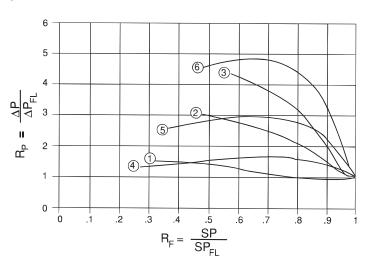
Table 2 – Edward Cast Steel Angle ValveFlow Coefficients

Flow	Coeffi	cients	;				Colored numerals are in metric units							
Si	ze			Stop and	l Check \	/alves		Check Valve Coeff	icient		Perf.			
NPS	PS DN		F	x _T	K _i	d	ΔP _{co}	ΔP _{FL}	SP _{fl}	C	Curves Fig. 17			

Class 900 (PN 150) Figure No. 4017/4017Y, 4317Y Stop valves, 4007/4007Y, 4307Y Stop-Check valves, 4095/4095Y, 4395Y Check valves

3	80	180	0.62	0.24		2.87	72.9	0.92	0.063	0.64	0.044	8980	1020	56	5
4	100	325	0.62	0.25		3.87	98.2	1.5	0.10	1.2	0.081	22,200	2510	75	5
5	125	485	0.63	0.25		4.75	121	1.2	0.083	1.0	0.072	31,200	3530	70	5
6	150	790	0.63	0.25	0.08	5.75	146	1.3	0.092	1.0	0.071	50,900	5770	78	3
8	200	1350	0.63	0.25	0.00	7.50	190	1.4	0.099	1.0	0.071	86,600	9810	78	3
10	250	2100	0.63	0.25		9.37	238	1.7	0.12	1.3	0.090	152,000	17,200	88	3
12	300	2950	0.63	0.25		11.12	282	1.8	0.13	1.4	0.093	218,000	24,700	90	2
14	350	3600	0.63	0.25		12.25	311	1.5	0.10	1.3	0.091	261,000	29,600	89	2
16	400	6450	0.56	0.19		14.00	356	1.9	0.13	0.74	0.051	350,000	39,700	91	2
18	450	*	*	*	0.06	15.75	400	*	*	*	*	*	*	*	*
20	500	10,000	0.56	0.19	0.00	17.50	444	1.7	0.11	0.76	0.052	553,000	62,600	92	3
24	600	14,500	0.56	0.19		21.00	533	2.6	0.18	1.1	0.073	940,000	106,000	109	3

Class 1500 (PN 260) Figure No. 2017Y, 7517/7517Y Stop valves, 2007Y, 7507/7507Y Stop-Check valves, 2095Y, 7595/7595Y Check valves


2.5	65	115	0.59	0.22		2.25	57.2	0.75	0.052	0.58	0.040	5560	630	56	6
3	80	180	0.57	0.21	0.06	2.75	69.9	0.92	0.063	0.64	0.044	8980	1020	60	5
4	100	320	0.55	0.19	0.00	3.62	91.9	1.50	0.10	1.20	0.081	22,000	2490	86	5
5	125	475	0.54	0.18		4.37	111	1.30	0.093	1.20	0.083	33,000	3740	88	5
6	150	690	0.63	0.25		5.37	136	1.50	0.10	1.00	0.069	43,800	4970	77	3
8	200	1150	0.63	0.25		7.00	178	1.60	0.11	0.99	0.068	73,900	8370	77	3
10	250	1850	0.63	0.25	0.08	8.75	222	1.60	0.11	1.20	0.083	127,000	14,400	85	3
12	300	2550	0.63	0.25		10.37	263	1.80	0.13	1.40	0.094	190,000	21,500	90	3
14	350	3100	0.63	0.25		11.37	289	1.70	0.12	1.30	0.091	225,000	25,500	89	3
16	400	5550	0.56	0.19	0.06	13.00	330	2.00	0.14	0.79	0.055	313,000	35,400	94	3
18	450	5350	0.54	0.19	0.00	14.62	371	2.00	0.14	0.86	0.059	313,000	35,400	75	3
20	500	*	*	*	*	16.37	416	*	*	*	*	*	*	*	*
24	600	*	*	*	*	19.62	498	*	*	*	*	*	*	*	*

See note following section 2.4.1 for discussion of C factor.

* Consult Flowserve Edward Valves Sales Representative

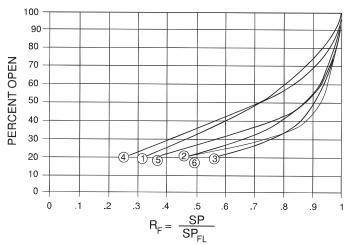


Figure 17 – Edward Cast Steel Angle Piston Lift Check Valve Performance Curves

Table 3 – Edward Cast Steel Flite-Flow® Stop andStop-Check Valve Flow Coefficients

Black numerals are in U.S. customary units or dimensionless Colored numerals are in metric units

Si	ze			Stop and		alves		Check Valve Coeff	icients		Perf.
NPS	DN	Cv	F	x _T	K,	d	ΔP _{co}	ΔP _{FL}	SP _{fl}	C	Curves Fig. 17

Class 600 (PN 110) Figure No. 614, 614Y, 714Y Stop valves; 602, 602Y, 702Y Stop-Check valves; 692, 692Y, 792Y Piston Lift Check valves

3	80	295	0.52	0.20	0.08	3.00	76.2	0.8	0.06	0.44	0.030	12,400	1,400	70	4, 4
4	100	525	0.52	0.20	0.08	4.00	102	0.8	0.06	0.47	0.032	22,900	2,590	73	4, 4
6	150	1,200	0.52	0.20	0.08	6.00	152	0.7	0.05	0.53	0.037	54,500	6,170	77	4, 4
8	200	2,050	0.52	0.20	0.08	7.87	200	0.9	0.06	0.68	0.047	106,000	12,000	87	4, 4
10	250	3,100	0.52	0.20	0.08	9.75	248	1.0	0.07	0.85	0.059	182,000	20,600	98	4, 4
12	300	4,550	0.52	0.20	0.08	11.75	298	1.1	0.08	0.96	0.066	281,000	31,800	104	4, 4
14	350	4,550	0.52	0.20	0.08	11.75	298	1.1	0.08	0.96	0.066	281,000	31,800	104	4, 4
16	400	7,150	0.56	0.19	0.04	14.75	375	1.5	0.10	1.05	0.072	463,000	52,400	108	4, 4
20	500	11,000	0.52	0.20	0.08	18.25	484	1.4	0.10	0.96	0.066	677,000	76,700	104	1, 1
24	600	16,000	0.56	0.19	0.04	22.00	558	1.2	0.08	0.86	0.076	935,000	106,000	98	1, 2

Class 900 (PN 150) Figure No. 4014, 4014Y, 4314Y Stop valves; 4002, 4002Y, 4302Y Stop-Check valves; 4092, 4092Y, 4392Y Piston Lift Check valves

3	80	270	0.52	0.02	0.08	2.87	72.9	0.9	0.06	0.52	0.036	12,400	1,400	77	4, 4
4	100	490	0.52	0.02	0.08	3.87	98.2	0.9	0.06	0.53	0.037	22,600	2,550	77	4, 4
6	150	1,100	0.52	0.02	0.08	5.75	146	0.7	0.05	0.50	0.034	48,500	5,490	75	4, 4
8	200	1,850	0.52	0.02	0.08	7.50	191	0.8	0.06	0.65	0.045	94,200	10,700	85	4, 4
10	250	2,900	0.52	0.02	0.08	9.37	238	1.0	0.07	0.84	0.058	167,000	18,900	97	4, 4
12	300	4,050	0.52	0.02	0.08	11.12	282	1.1	0.08	0.93	0.064	248,000	28,100	102	4, 4
14	350	4,050	0.52	0.02	0.08	11.12	282	1.1	0.08	0.93	0.064	248,000	28,100	102	4, 4
16	400	6,450	0.52	0.02	0.08	14.00	356	1.3	0.09	1.09	0.075	426,000	48,200	111	4, 4

Class 1500 (PN 260) Figure No. 2014Y, 7514Y Stop valves; 2002Y, 7502Y Stop-Check valves; 2092Y, 7592Y Check valves

		, 0													
3	80	270	0.52	0.20	0.08	2.87	72.9	1.0	0.07	0.51	0.035	12,200	1,380	75	4, 4
4	100	425	0.52	0.20	0.00	3.62	91.9	1.0	0.07	0.62	0.043	21,200	2,400	82	4, 4
6	150	950	0.61	0.23		5.37	136	1.3	0.09	0.73	0.050	51,200	5,800	90	1, 3
8	200	1,600	0.61	0.23		7.00	178	1.5	0.10	0.74	0.051	87,800	9,940	91	1, 2
10	250	2,500	0.61	0.23]	8.75	222	1.5	0.10	0.89	0.061	150,000	17,000	100	1, 2
12	300	3,550	0.61	0.23	0.05	10.37	263	1.7	0.12	1.01	0.070	225,000	25,500	107	1, 2
14	350	3,550	0.59	0.22	0.05	10.37	263	1.7	0.12	1.01	0.070	225,000	25,500	106	1, 2
16	400	5,550	0.61	0.23]	13.00	330	1.8	0.12	1.09	0.075	366,000	41,500	110	1, 2
18	450	5,550	0.59	0.22		13.00	330	1.8	0.12	1.09	0.075	366,000	41,500	110	1, 2
20	500	8,800	0.61	0.23		16.37	416	2.2	0.15	1.46	0.101	673,000	76,200	128	1, 2
24	600	8,800	0.59	0.23	0.06	16.37	416	2.3	0.16	*	*	*	*	*	*

See note following section 2.4.1 for discussion of C factor.

* Consult Flowserve Edward Valves Sales Representative.

Figure 18 – Cast Steel Flite-Flow[®] Piston Lift Check Valve Performance Curves

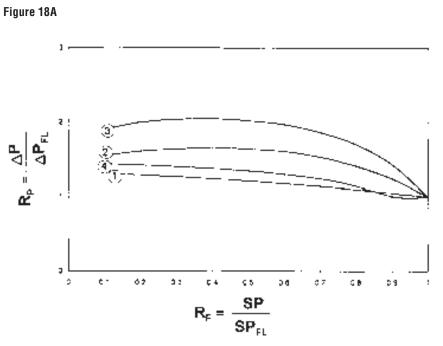
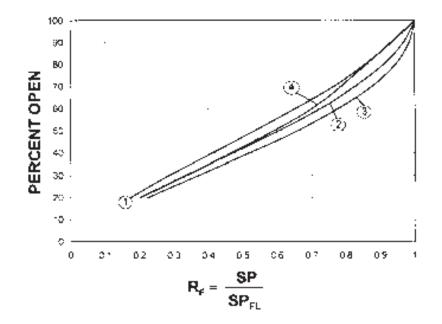



Figure 18B

Table 4 – Edward Cast Steel Tilting-Disc check Valve Flow Coefficients'

Black numerals are in U.S. customary units or dimensionless Colored numerals are in metric units

Si	Size Check Valve Flow Coefficients					Coefficients	Check V	alve Coefficients		Perf.
NPS	DN	C _v	F	x,	K,	d	ΔP _{FL}	SP _{FL}	C	Curves Fig. 20

Class 600 (PN 110) Figure No. 670Y, 770Y

6 8

10

12

14

16

18 20

	,		, -										
150	1110	0.57	0.20		6.00	152	0.80	0.055	62,300	7,060	88	1	
200	1850	0.57	0.20		7.87	200	1.0	0.069	115,000	13,000	95	1	
250	2850	0.57	0.20		9.75	248	1.1	0.076	187,000	21,200	100	1	
300	4100	0.57	0.20	0.05	11.75	298	1.2	0.083	285,000	32,300	105	1	
350	4050	0.56	0.20	0.05	12.87	327	1.2	0.083	285,000	32,300	88	1	
400	6500	0.57	0.20		14.75	375	1.4	0.097	481,000	54,500	113	1	
450	8100	0.57	0.20		16.50	419	1.5	0.10	622,000	70,500	116	1	
500	9950	0.57	0.20			18.25	464	1.6	0.11	786,000	89,000	120	1

Class 900 (PN 150) Figure No. 970Y, 4370Y

2.5	65	195	0.44	0.12	0.02	2.25	57.2	1.0	0.069	12,200	1,380	123	1
3	80	245	0.57	0.20		2.87	72.9	0.60	0.041	12,200	1,380	75	1
4	100	215	0.59	0.23		3.87	98.2	0.80	0.055	12,200	1,380	41	1
6	150	990	0.57	0.20		5.75	146	0.80	0.055	56,800	6,430	87	1
8	200	1700	0.57	0.20		7.50	190	0.80	0.055	97,000	11,000	88	2
10	250	2400	0.56	0.20	0.05	9.37	238	0.90	0.062	145,000	16,400	84	2
12	300	3450	0.56	0.20	0.05	11.12	282	1.1	0.076	233,000	26,400	96	1
14	350	3300	0.56	0.20		12.25	311	1.3	0.090	233,000	26,400	79	1
16	400	4950	0.56	0.20]	14.00	356	1.3	0.090	360,000	40,800	94	1
18	450	4700	0.57	0.21]	15.75	400	1.5	0.10	360,000	40,800	74	1
20	500	9150	0.57	0.20		17.50	444	1.2	0.083	713,000	80,800	119	1

Class 1500 (PN 260) Figure No. 1570Y, 2070Y

2.5	65	195	0.44	0.12	0.02	2.25	57.2	1.0	0.069	12,200	1,380	123	1
3	80	245	0.52	0.17		2.75	69.9	0.60	0.041	12,200	1,380	82	1
4	100	225	0.57	0.22		3.62	91.9	0.70	0.048	12,200	1,380	47	1
6	150	970	0.51	0.16		5.37	136	0.90	0.062	56,800	6,430	100	1
8	200	1650	0.51	0.16		7.00	178	0.90	0.062	97,000	11,000	101	2
10	250	2400	0.54	0.18	0.05	8.75	222	0.90	0.062	145,000	16,400	96	2
12	300	3450	0.53	0.17	0.05	10.37	263	1.1	0.076	233,000	26,400	110	1
14	350	3400	0.56	0.20		11.37	289	1.2	0.083	233,000	26,400	92	1
16	400	5050	0.57	0.20		13.00	330	1.3	0.090	360,000	40,800	108	1
18	450	4900	0.56	0.20		14.62	371	1.4	0.097	360,000	40,800	86	1
24	600	10,500	0.56	0.20		19.62	498	1.5	0.10	824,000	93,400	109	1

See note following section 2.4.1 for discussion of C factor.

¹ Crack open pressure drop ΔP_{co} values are generally less than 0.25 psi (0.01 bar).

Figure 19 – Tilting-Disc Check Valve Performance Curves

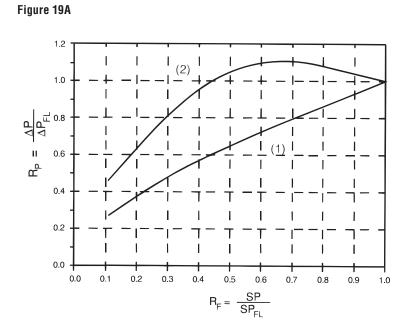
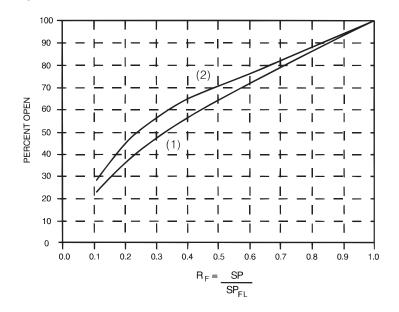



Figure 19B

Table 5 – Edward Cast Steel Equiwedge®Gate Valve Flow Coefficients

Regular Port Gate Valves												
Si	ze	C	E	v	v	C						
NPS	DN	ς	FL	X _T	K _i	L .						
Class 60)0 (<mark>PN 1</mark>	10) Figure	e No. 161	1/ 1611Y,	1711Y St	op valves						
2.5	65	380	0.77	0.25	0.02	2.50	63.5					
3.0	80	610	0.44	0.10	0.02	3.00	76.2					
4.0	100	1250	0.41	0.08	0.03	4.00	102					
6.0	150	3250	0.40	0.07	0.02	6.00	152					
8.0	200	5300	0.35	0.06	0.02	7.87	200					
10.0	250	8550	0.34	0.06	0.01	9.75	248					
12.0	300	12,000	0.31	0.05	0.01	11.75	298					
14.0	350	14,000	0.32	0.05	0.01	12.87	327					
16.0	400	18,500	0.32	0.05	0.01	14.75	375					
18.0	450	25,500	0.30	0.05	0.01	16.50	419					
20.0	500	30,500	0.31	0.05	0.01	18.25	464					
22.0	550	36,500	0.30	0.05	0.01	20.12	511					
24.0	600	46,500	0.30	0.05	0.01	22.00	559					
26.0	650	53,500	0.30	0.05	0.01	23.75	603					
28.0	700	62,500	0.29	0.04	0.01	25.50	648					
_		_		_	_	_						
_	_	—		_	_	—	_					

E	slack numerals	are in U.S.	customary	y units or	dimensior	iless
		C	olored num	ierals are	in metric (units

	١	/enturi P	ort Gate	Valves		
	Size	c	E	v	v	d
NPS	DN	υv	F.	Λ _T	™ i	u

Class 600 (PN 110) Figure No. 1611BY, 1711BY Stop valves

	,,		.,	otop tu			
—	—	_	—	—	—	—	_
—	—	—	—	—	—	—	—
_	—	_	—	—	—	—	_
_	_	—	_	_	_	_	_
8x6x8	200x150x200	2650	0.33	0.07	0.03	7.87	200
10x8x10	250x200x250	4500	0.32	0.07	0.02	9.75	248
12x10x12	300x250x300	7100	0.32	0.06	0.02	11.75	298
14x12x14	350x300x350	9900	0.32	0.06	0.02	12.87	327
16x14x16	400x350x400	12,000	0.31	0.06	0.02	14.75	375
18x16x18	450x400x450	17,500	0.29	0.05	0.01	16.50	419
20x18x20	500x450x500	22,000	0.30	0.06	0.02	18.25	464
22x20x22	550x500x550	29,000	0.28	0.05	0.01	20.12	511
24x20x24	600x500x600	24,500	0.30	0.06	0.02	22.00	559
26x22x26	650x550x650	30,000	0.30	0.06	0.02	23.75	603
28x24x28	700x600x700	40,500	0.29	0.05	0.01	25.50	648
30x26x30	750x650x750	46,500	0.29	0.05	0.01	27.37	695
32x28x32	800x700x800	52,000	0.30	0.05	0.01	29.25	743

Table 5 (continued) – Edward Cast Steel Equiwedge[®] Gate Valve Flow Coefficients

Black numerals are in U.S. customary units or dimensionless
Colored numerals are in metric units

X_T

K,

Venturi Port Gate Valves

 \mathbf{F}_{L}

 $\mathbf{C}_{\mathbf{v}}$

Size

DN

NPS

		Reg	ular Por	t Gate Va	lves	
Si	ze	c	E	v	v	, A
NPS	DN	υ _ν	Γ _L	• • •	i	u

Class 9	00 <mark>(PN</mark> 1	50) Figur	e No. 191	1/ 1911Y,	14311Y S	Stop valve	S
2.5	65	380	0.63	0.17	0.02	2.25	57.2
3.0	80	455	0.44	0.11	0.03	2.87	72.9
4.0	100	990	0.42	0.09	0.02	3.87	98.2
6.0	150	2350	0.41	0.09	0.02	5.75	146
8.0	200	4200	0.37	0.07	0.02	7.50	190
10.0	250	6250	0.40	0.08	0.02	9.37	238
12.0	300	9500	0.36	0.07	0.02	11.12	282
14.0	350	12,000	0.35	0.06	0.02	12.25	311
16.0	400	15,000	0.35	0.06	0.02	14.00	356
18.0	450	19,500	0.33	0.06	0.02	15.75	400
20.0	500	26,000	0.35	0.06	0.02	17.50	444
22.0	550	28,000	0.38	0.07	0.02	19.25	489
24.0	600	38,000	0.32	0.05	0.01	21.00	533
26.0	650	45,000	0.32	0.05	0.01	22.75	578
28.0	700	52,500	0.31	0.05	0.01	24.50	622
		—	_		_	_	_
		_	_	—	_	—	

Class 900 (PN 150) Figure A	lo. 1911B	Y, 14311E	RY Stop v	alves		
_	—	—	_	—	_	_	_
_	—	—	—	—	—	—	_
	—	—	—	—	—	—	_
—	_	—		_	—	—	—
8x6x8	200x150x200	2000	0.37	0.09	0.03	7.50	190
10x8x10	250x200x250	3500	0.35	0.08	0.02	9.37	238
12x10x12	300x250x300	5950	0.35	0.08	0.02	11.12	282
14x12x14	350x300x350	7700	0.39	0.09	0.03	12.25	311
16x14x16	400x350x400	10,000	0.35	0.07	0.02	14.00	356
18x16x18	450x400x450	14,000	0.32	0.06	0.02	15.75	400
20x18x20	500x450x500	18,000	0.32	0.06	0.02	17.50	444
22x20x22	550x500x550	25,000	0.31	0.06	0.02	19.25	489
24x20x24	600x500x600	23,000	0.31	0.06	0.02	21.00	533
26x22x26	650x550x650	28,000	0.31	0.06	0.02	22.75	578
28x24x28	700x600x700	33,500	0.31	0.06	0.02	24.50	622
30x26x30	750x650x750	38,000	0.32	0.06	0.02	26.25	667
32x28x32	800x700x800	48,000	0.29	0.05	0.01	28.00	711

Class 1500 (PN 260) Figure No. 11511BY, 12011BY Stop valves

	(In Loo) riguio	110. 1101	101, 1201		ranoo		
_	—	—	—	—	—	—	_
_	_	—	_		_	_	_
		—	_	_	—	_	_
	_	—	_		_	_	
8x6x8	200x150x200	1650	0.43	0.12	0.04	7.00	178
10x8x10	250x200x250	2950	0.41	0.11	0.03	8.75	222
12x10x12	300x250x300	4500	0.40	0.10	0.03	10.37	263
14x12x14	350x300x350	7050	0.37	0.08	0.02	11.37	289
16x14x16	400x350x400	8700	0.37	0.08	0.02	13.00	330
18x16x18	450x400x450	11,000	0.37	0.08	0.02	14.62	371
20x18x20	500x450x500	13,500	0.36	0.08	0.02	16.37	416
22x20x22	550x500x550	18,000	0.34	0.07	0.02	18.00	457
24x20x24	600x500x600	17,000	0.35	0.07	0.02	19.62	498
26x22x26	650x550x650	20,500	0.35	0.07	0.02	21.25	540
28x24x28	700x600x700	24,000	0.36	0.08	0.02	23.00	584

Class 1500 (PN 260) Figure No. 11511/11511Y, 12011Y Stop valves

2.5	65	305	0.78	0.26	0.02	2.25	57.2
3.0	80	420	0.52	0.14	0.03	2.75	69.9
4.0	100	760	0.47	0.12	0.03	3.62	91.9
6.0	150	1650	0.54	0.15	0.04	5.37	136
8.0	200	3150	0.48	0.12	0.03	7.00	178
10.0	250	5500	0.40	0.08	0.02	8.75	222
12.0	300	6850	0.42	0.09	0.02	10.37	263
14.0	350	9700	0.40	0.08	0.02	11.37	289
16.0	400	12,000	0.39	0.08	0.02	13.00	330
18.0	450	15,000	0.37	0.07	0.02	14.62	371
20.0	500	18,500	0.37	0.07	0.02	16.37	416
22.0	550	23,000	0.37	0.07	0.02	18.00	457
24.0	600	27,000	0.37	0.08	0.02	19.62	498
_	_	—	_	_	_	_	_
_	_	_	_	_			

Table 6 – Edward Forged Steel Hermavalve®Coefficients

Black numerals are in U.S. customary units or dimensionless Colored numerals are in metric units

NPS	DN		ular Port Her 5104, 15008,				iced Port Her 5114, 15018,			d	
		Cv	F	X _T	K _i	Cv	F	Χ _τ	K _i		
0.05	15	4.9	0.46	0.31	0.07	_	_	_	_	0.464	11.8
0.75	20	6.1	0.52	0.36	0.09	_	_	_		0.612	15.5
1.00	25	11	0.55	0.38	0.10	6.1	0.51	0.36	0.09	0.815	20.7
1.50	40	32	0.62	0.39	0.13	11	0.53	0.37	0.09	1.338	34.0
2.00	50	50	0.68	0.40	0.15	32	0.57	0.37	0.11	1.687	42.8
2.50	65	_	—	—	_	50	0.59	0.37	0.12	2.125	54.0

Table 7 – Forged Steel Univalve[®] Flow Coefficients

Black numerals are in U.S. customary units or dimensionless Colored numerals are in metric units

Si	ze		Sto	p and Cl	heck Val	ves	Check Valves		Std.)	Check Valv	es* without Sprii	ıgs	
NPS	DN	C _v	F	X _T	K _i	d	ΔP _{FL}	SP _{fl}	C	ΔP _{FL} SP _{FL} C			

Class 1500 (PN 260) All Stop valves, all Stop-Check valves, all Piston Check valves

		, ,		,													
0.50	15	7.0				0.464	11.8			886	100	210			443	50.2	105
0.75	20	12]			0.612	15.5			1520	172	207			760	86.0	103
1.00	25	12				0.815	20.7			1520	172	117			760	86.0	58
1.25	32	42]			1.160	29.5			5320	602	201			2660	301	101
1.50	40	40	0.66	0.27	0.16	1.338	34.0	4.0	0.28	5060	574	144	1.0	0.069	2530	287	72
2.00	50	68]			1.687	42.8			8610	975	154			4300	488	77
2.50	65	110]			2.125	54.0			13,900	1580	157			6960	789	79
3.00	80	100]			2.624	66.6			12,700	1430	94			6330	717	47
4.00	100	85				3.438	87.3			10,800	1220	46			5380	609	23

Class 2500 (PN 420) All Stop valves, all Stop-Check valves, all Piston Check valves

0.50	15	7.0				0.464	11.8			886	100	210			443	50.2	105
0.75	20	12				0.612	15.5			760	86.0	103			380	43.0	52
1.00	25	11]			0.599	15.2			1390	158	198			696	78.9	99
1.25	32	30				0.896	22.8			3800	430	241			1900	215	121
1.50	40	28	0.63	0.24	0.15	1.100	28.0	4.0	0.28	3540	401	149	1.0	0.069	1770	201	75
2.00	50	70				1.503	38.2			8860	1000	200			4430	502	100
2.50	65	100]			1.771	45.0			12,700	1430	206			6330	717	103
3.00	80	100]			2.300	58.4			12,700	1430	122			6330	717	61
4.00	100	90				3.152	80.1			11,400	1290	58			5700	645	29

NOTES: See Table 9 for ΔP_{co} . See notes following section 2.4.1 for discussion of C factor.

* Stop-check valves are only furnished without springs.

Table 8 – Forged Steel Inclined Bonnet Valve Flow Coefficients

Black numerals are in U.S. customary units or dimensionless Colored numerals are in metric units

Si	ze		Sto	op and Cl	heck Val	ves	Check Valves		Std.)	Check Valves* without Springs				
NPS	DN	Cv	F _L	X _T	K,	d	ΔP _{FL}	SP _{FL}	C	ΔP _{FI} SP _{FI} C				

Class 600 (PN 110) Figure No. 848/848Y Stop valve, 868/868Y Stop-Check valve, 838/838Y Piston Check valve

		, 0															
0.25	8	1.4				0.364	9.2			198	22.4	76			68.6	7.77	26
0.38	10	3.3				0.493	12.5			467	52.9	98			162	18.3	34
0.50	15	3.3				0.546	13.9			467	52.9	80			162	18.3	28
0.75	20	5.7	0.72	0.30	0.20	0.742	18.8	5.0	0.34	722	81.8	67	0.6	0.041	250	28.3	23
1.00	25	13.5	0.72	0.30	0.20	0.957	24.3	5.0	0.34	1910	216	106	0.0	0.041	662	75.0	37
1.25	32	23.5]			1.278	32.5			3330	377	104			1150	131	36
1.50	40	37.5				1.500	38.1			5290	600	120			1830	208	42
2.00	50	48.5				1.939	49.3			6860	778	93			2380	269	32

NOTES: See Table 9 for ΔP_{co} . See note following section 2.4.1 for discussion of C factor.

Table 9 – Crack-Open ΔP for Edward Forged Steel Check Valves, $\Delta P_{co} - PSI$ (BAR)

Black numerals are in U.S. customary units or dimensionless Colored numerals are in metric units

				Colored Ituli			
Valve Type	Installa	ation Orientation	Valves with	Springs (Std.)	Valves without Springs		
		Bonnet up	0.7 – 0.9	0.05 - 0.06	0.1 – 0.5	0.007 – 0.03	
	Horizontal	Bonnet sideways*	0.3 – 0.8	0.02 - 0.06		_	
Inclined, Bolted Bonnet, Piston Lift		Bonnet down*	0.05 – 0.7	0.003 – 0.05	—	_	
Bonnet, Fiston Ent	Vertical	Bonnet up	0.7 – 1.0	0.05 – 0.07	0.1 – 0.3	0.007 – 0.02	
		Bonnet down*	0.05 – 0.7	0.003 – 0.05		_	
Inclined, Univalve®, Piston Lift		Bonnet up	1.0 – 1.5	0.07 – 0.10	0.4 – 0.8	0.03 – 0.06	
	Horizontal	Bonnet sideways*	0.5 – 1.2	0.03 - 0.08	—	_	
		Bonnet down*	0.05 – 1.1	0.003 – 0.08	—	_	
	Vertical	Bonnet up	1.0 – 1.5	0.07 – 0.10	0.4 – 0.8	0.03 – 0.06	
	Vertical	Bonnet down*	0.05 – 1.1	0.003 – 0.08	_	_	

* Not recommended because of possible accumulation of debris in valve neck.

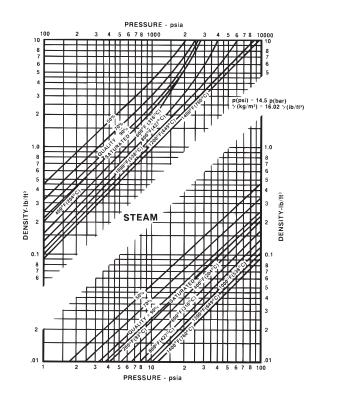
Figure 20 – Ratio of Specific heats (k) for some gasses

k = 1.3	Ammonia	Carbon Dioxide	Dry Steam	Methane	Natural Gas
k = 1.4	Air	Carbon Monoxide	Hydrogen	Nitrogen	Oxygen

Figure 21A – Saturated Water - Temperature, Pressure & Density (U.S. Units)

Water Temp. °F	32	70	100	200	300	400	500	550	600	650	700	705
Vapor Pressure, p _v	0.09	0.36	0.95	11.5	67	247	681	1045	1543	2208	3094	3206
Water Density , ρ	62.4	62.3	62.0	60.1	57.3	53.7	49.0	46.0	42.3	37.4	27.3	19.7

P = Pressure in psia, ρ = Density in Ib./ft^s


Figure 21B – Saturated Water - Temperature, Pressure & Density (Metric)

-			-					-			
Water Temp. °C	0	25	50	100	150	200	250	300	350	370	374
Vapor Pressure, p _v	.006	.032	.123	1.01	4.76	15.6	39.8	85.9	165.4	211	221
Water Density, ρ	1000	997	988	958	917	865	799	712	574	452	315

P = Pressure in Bar Absolute, ρ = Density in Kg/m³

Figure 22 – Density of Steam

Figure 23 – Density of Air

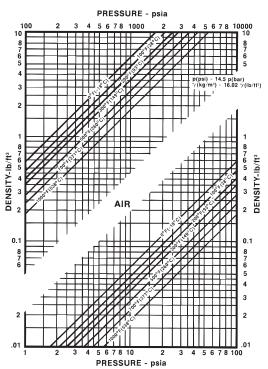
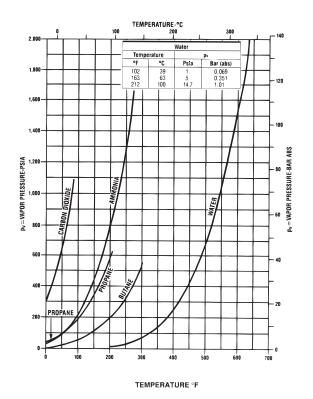



Figure 24 – Vapor Pressure of Liquid

<u>253</u>

Conversion of Measurement Units

2

Length

1 in. = 25.4 mm	1 mile = 5280 ft
1 in. = 2.54 cm	1 mile = 1.609 km
1 in. = 0.0254 m	1 km = 3281 ft
1 ft = 0.3048 m	1 m = 39.37 in.

Area

$1 \text{ in.}^2 = 645.2 \text{ mm}^2$	1 m ² = 10.76 ft
1 in. ² = 6.452 cm ²	1 m ² = 1550 in.
$1 \text{ ft}^2 = 144 \text{ in.}^2$	

Volume

- $1 \text{ in.}^{3} = 16.39 \text{ cm}^{3}$ 1 m³ = 35.31 ft³ 1 ft³ = 1728 in.³ $1 \text{ m}^{3} = 264.2 \text{ U.S. gal.}$ 1 U.S. gal. = 231 in.³ $1 \text{ m}^3 = 220 \text{ Imp. gal.}$ 1 U.S. gal. = 0.1337 ft³ 1 m³ = 1000 liters 1 U.S. gal. = 0.8327 1 liter = 61.02 in.³ Imp. gal. 1 U.S. gal. = 3.7854 1 liter = 1000 cm³ liters $1 \text{ ft}^3 = 28.32 \text{ liters}$ $1 \text{ ml} = 1 \text{ cm}^{3}$ Densitv $1 \text{ lb/ft}^{3} = 16.02 \text{ kg/m}^{3}$ 1 lb/ft³ = 0.01602 g/cm³ 1 lb/in³ = 1728 lb/ft³
- density = specific gravity x reference density density = 1/specific volume

Specific Volume

specific volume = 1/density

Temperature

Specific Gravity – Liquids

C –	density of liquid
u ₁ –	density of water at reference condition

Commonly used relations are:

 $G_{I} = \frac{\text{density ofl iquid}}{\text{density of water at 60°F}}$ and atmospheric pressure

$$G_1 = \frac{\rho (lb/ft^3)}{62.38 (lb/ft^3)}$$

 $G_{i} = \frac{\text{density of liquid}}{\text{density of water at 4°C}}$ and atmospheric pressure

$$G_{1} = \frac{\rho (kg/m^{3})}{1000 (kg/m^{3})}$$
254

For practical purposes, these specific gravities may be used interchangeably, as the reference densities are nearly equivalent.

Specific gravities are sometimes given with two temperatures indicated, e.g.,

 $G_{1} \frac{60^{\circ}F}{60^{\circ}F}$, $G_{1} \frac{15.5^{\circ}C}{4^{\circ}C}$, $G_{1}60^{\circ}F/60^{\circ}$

The upper temperature is that of the liquid whose specific gravity is given, and the lower value indicates the water temperature of the reference density. If no temperatures are shown, assume that the commonly used relations apply.

For petroleum liquids having an "API degrees" specification:

 $G_160^{\circ}F/60^{\circ} = \frac{141.5}{131.5 + API \text{ degrees}}$

Pressure

1 Mpa = 145 psi 1 psi = 6895 Pa 1 pond = 1 gf 1 psi = 6895 N/m² 1 std atm = 14.696 psi 1 Pa = 1 N/m² 1 std atm = 1.0133 bar 1 bar = 14.50 psi 1 std atm = 1.0133 x 1 bar = 100,000 N/m² 10⁵ N/m² 1 kgf/cm2 = 14.22 psi 1 std atm = 760 torr absolute pressure = gage pressure + atmospheric pressure **Specific Gravity – Gases**

 $G_{\mathfrak{g}} = \frac{(at \ pressure \ and \ temperature \ of \ interest)}{density \ of \ air} \\ (at \ same \ pressure \ and \ temperature)$

Because the relation between density, pressure and temperature does not always behave in an ideal way (i.e., ideally, density is proportional to pressure divided by temperature, in absolute units), use of the above relation requires that the pressure and temperature of interest be specified. This means that the specific gravity of a gas as defined may vary with pressure and temperature (due to "compressibility" effects).

Frequently, specific gravity is defined using:

 $G_{\mathfrak{g}} = \frac{\text{molecular weight of gas}}{\text{molecular weight of air}} = \frac{M_w}{28.96}$

If this relation is used to calculate density, one must be careful to consider "compressibility" effects.

When the pressure and temperature of interest are at or near "standard" conditions (14.73 psia, 60°F) or "normal" conditions (1.0135 bar abs, 0°C), specific gravities calculated from either of the above relations are essentially equal.

Pressure Head

1 foot of water at 60°F = 0.4332 psi

$$p(psi) = \frac{\rho(lb/ft^3) \times h(feet of liquid)}{144}$$

$$p(N/m^2) = \frac{\rho(kg/m^3) \times h(\text{meters of liquid})}{0.1020}$$

$$p(bar) = \frac{\rho(kg/m^3) \times h(meters of liquid)}{10200}$$

1 meter of water at 20°C = 9.790 kN/m2 1 meter of water at 20°C = 97.90 mbar 1 meter of water at 20°C = 1.420 psi

Flow Rate

• mass units 1 lb/hr = 0.4536 kg/hr 1 metric tonne/hr = 2205 lb/hr

liquid volume units
1 U.S. gpm = 34.28 BOPD BOPD = barrels oil per day
1 U.S. gpm = 0.8327 Imp. gpm
1 U.S. gpm = 0.2273 m³/hr
1 U.S. gpm = 3.785 liters/min
1 m³/hr = 16.68 liters/min
1 ft³/s = 448.8 U.S. gpm

• mixed units w(lb/hr) = 8.021 q(U.S. gpm) x ρ (lb/ft³) w(lb/hr) = 500 q(U.S. gpm of water at 70°F or less)

In the following: STP (standard conditions) refers to 60°F, 14.73 psia NTP (normal conditions) refers to 0°C, 1.0135 bar abs

 $G_{\mathfrak{g}} = \frac{\text{molecular weight of gas}}{\text{molecular weight of air}} = \frac{M_{w}}{28.96}$

 $w(lb/hr) = 60 \ q(scfm \ of \ gas) \ x \ \rho(lb/ft^3) \ at \ STP \\ w(lb/hr) = q(scfh \ of \ gas) \ x \ \rho(lb/ft^3) \ at \ STP \\ w(lb/hr) = 4.588 \ q(scfm \ of \ gas) \ x \ G_g \\ w(lb/hr) = 0.07646 \ q(scfh \ of \ gas) \ x \ G_g \\ w(lb/hr) = 3186 \ q(MMscfd \ of \ gas) \ x \ G_g \\ Mmscfd = millions \ of \ standard \ cubic \ feet \ per \ day \\ w(kg/hr) = q(normal \ m^3/hr \ of \ gas) \ x \ \rho(kg/m^3 \ at \ NTP)$

 $w(kg/hr) = 1.294 q(normal m³/hr of gas) x G_{n}$

3. Flowserve Valve Design Standards and Features

Engineering and research efforts—both analytical and experimental—have contributed to innovative leadership by Flowserve Valves through the introduction or practical development of some major industrial valving features:

- Integral hardfaced seats in globe and angle valves to permit compact valve designs and to resist erosion and wear.
- Impactor handwheels and handles to permit tight shutoff of manually operated globe, angle valves and gate valves.
- Body-guided globe and angle valve discs to minimize wear and ensure alignment with seats for tight sealing.
- Inclined-bonnet globe valves with streamlined flow passages to minimize pressure drop due to flow.
- Equalizers for large piston (lift) check and stop-check valves to ensure full lift at moderate flow rates and to prevent damage due to instability.
- Compact pressure-seal bonnet joints to eliminate massive bolted flanges on large high-pressure valves:

 First with wedge-shaped metal gaskets with soft coatings, optimized over more than four decades to provide tight sealing in most services.

 Now, for the severest services, with composite gaskets using flexible graphite and special anti-extrusion rings to ensure tight sealing, even with severe temperature transients—overcomes need for field re-tightening and eases disassembly for maintenance.

 Optimized stem-packing chambers and packing-material combinations to ensure tight stem sealing:

- First with asbestos-based materials and then with asbestos-free materials.

- Hermetically sealed globe valves with sealwelded diaphragm or bellows stem seals to prevent stem leakage in critical applications, including nuclear.
- Gate valves with flexible double-wedge and double-disc construction to ensure tight sealing at both low and high pressures and to prevent sticking difficulties when opening.

 Qualified stored-energy actuators for quickclosing valves in safety-related nuclear-plant applications—and qualified valve-actuator combinations that are used in main-steam isolation service throughout the world.

Flowserve valve expertise, acquired over more than 110 years, is shared with national and international codes-and-standards committees and other technical societies and groups whose activities influence industrial valves. This cooperation has included participation in the development of every issue of ASME/ANSI B16.34 as well as most issues of ASME/ANSI B16.5 (Pipe Flanges and Flanged Fittings), which applied to steel valves before ASME/ANSI B16.34 was first issued in 1973. Flowserve representatives have also been active in preparation of ISO (International Standards Organization) standards. In addition, Flowserve representatives have participated where appropriate with trade organizations such as EPRI, INPO and various nuclear power-plant owners' groups in addressing valve issues.

3.1 Codes and Standards

Flowserve Edward valves are designed, rated, manufactured and tested in accordance with the following standards where applicable:

- ASME B16.34-2004 Valves: flanged, threaded and welding end.
- ASME/ANSI B16.10-2000– Face-to-face and end-to-end dimensions of valves.
- ASME B16.11 Forged Fittings, Socketwelding and Threaded.
- ASME Boiler and Pressure-Vessel Code

 Applicable sections including Nuclear Section III.
- ASME and ASTM Material Specifications Applicable sections.
- MSS Standard Practices Where appropriate: Edward sealability acceptance criteria are equal to or better than those in MSS SP-61.

Users should note that ASME/ANSI B16.34-2004 has a much broader scope than the previous editions. While this standard previously covered only flanged-end and butt welding-end valves, the 1988 edition covered socket welding-end and threaded-end valves as well. With this revision, the standard now addresses practically all types, materials and end configurations of valves commonly used in pressure-piping systems. Edward valves in this catalog with a listed class number (e.g., Class 1500) comply with ASME B16.34.

In addition to the standards listed, special requirements such as those of API and NACE are considered on application.

3.2 Pressure Ratings

Flowserve Edward valve-pressure ratings are tabulated in pressure-versus-temperature format. The temperatures range from -20°F (-29°C) to the maximum temperature permitted for each specific design and pressure-boundary material. Typically, pressure ratings decrease with increasing temperature, approximately in proportion to decreases in material strength.

Valves in this catalog with a listed class number are rated in accordance with ASME B16.34-2004. This standard establishes allowable working pressure ratings for each class number and material. These ratings also vary with class definitions as described below.

Standard Class (Ref: Paragraph 2.1.2 of ASME B16.34-2004) – These lowest ratings apply to flanged-end valves as well as any threaded-end or welding-end valves that do not meet the requirements for other classes. Typically, ratings for these valves are consistent with ratings listed for flanges and flanged fittings of similar materials in ASME/ ANSI B16.5-2003.

Special Class (Ref: Paragraph 2.1.3 of ASME B16.34-2004) – These ratings apply to threaded-end or welding-end valves which meet all requirements for a Standard Class rating and in addition meet special nondestructive examination (NDE) requirements. Valve bodies and bonnets are examined by volumetric and surface examination methods and upgraded as required. Pressure ratings for Special Class valves are higher than those for Standard Class valves (particularly at elevated temperatures) because of the improved assurance of soundness of pressure boundaries and because they are not subject to the limitations of flanged and gasketed end joints.

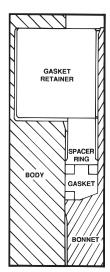
Series or CWP

A few valves in this catalog with "Series" or "CWP" designations are designed, rated, manufactured and tested to Flowserve Edward Valves proprietary standards. These valve designs, qualified by decades of successful field performance, will provide safe and reliable service in applications where an ASME/ANSI rating is not required by a piping code or other specifications.

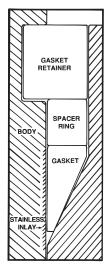
These valve designs and ratings are generally, but not completely, in conformance with recognized national standards (e.g., some employ high-strength materials not listed in standards). These valves have a history of excellent performance and safety, and they may be applied with confidence in applications where ASME/ANSI ratings are not required.

Notes:

1. While Edward cast-steel valves described in this catalog have even listed ratings (e.g., 1500), many designs provide more wall thickness than required in critical areas. Accordingly, welding-end valves can often be offered with intermediate ratings (ref: Paragraph 6.1.4 of ASME B16.34-2004) moderately higher than the nominal class ratings. With appropriate revisions to testing procedures, this can allow somewhat higher pressure ratings than those listed in the tabulations. Consult Edward Valves and provide information on specific required design pressure and temperature conditions.


2. Pressure ratings for carbon steel (A105 and A216 WCB) valves are tabulated for temperatures through 1000°F (538°C), which is consistent with ASME B16.34-2004. As noted in that standard, these materials are permissible but not recommended for prolonged usage at above about 800°F (427°C). This precaution is related to the possibility that carbides in carbon steel may be converted to graphite.

3. Other codes or standards applicable to piping systems may be more restrictive than ASME B16.34-2004 in limiting allowable pressures for valves. For example, ASME B31.1-1995 (Power Piping) does not permit use of carbon steel (A105 and A216 WCB) at design temperatures above 800°F (427°C). Users must consider codes or regulations applicable to their systems in selecting Edward Valves. 4. The maximum tabulated temperatures at which pressure ratings are given for Edward valves are in some cases less than the maximum temperatures given in ASME B16.34-2004 for valves of the same material. The maximum tabulated temperatures in this catalog may reflect limitations of materials used for other valve parts (e.g., stems). Use of Edward valves at temperatures above the maximum tabulated values may result in degradation and is not recommended.


3.3 Pressure-Seal Construction

The time-proven Edward pressure-seal bonnet seals more effectively as pressure increases, because the pressure forces the sealing elements into closer contact. Metal pressure-seal gaskets with soft plating employ optimum contact angles and materials for each applicable valve type, size and pressure-class rating. The gaskets yield initially under bolting load and then under pressure, to provide excellent sealing contact.

New designs for highest pressure/temperature services employ improved composite pressure-seal gaskets with flexible graphite rings. Flowserve leadership in proof-testing of Edward Valves flexible graphite stem packings clearly showed the superior sealing characteristics of this material, and continued research led to the development of a test-proven bonnet closure that provides highest sealing integrity. The composite pressure-seal provides excellent sealing at low and high pressures, even under severe pressure/temperature transients. It provides easier disassembly for maintenance, seals over minor scratches and does not depend on retightening under pressure after reassembly.

Composite Pressure-Seal Construction

Typical Pressure-Seal Construction

flowserve.com

3.4 Hardfacing

Integrity of seating surfaces on bodies, wedges and discs in gate, globe and check valves is essential for tight shutoff. Valve body seats must be hardfaced, and wedges and discs must either be hardfaced or made from an equivalent base material.

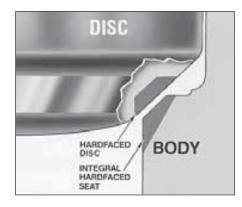
The standard seating material for most Edward valves is cobalt-based Stellite 21°, which has excellent mechanical properties and an exceptional performance history. As compared to Stellite 6°, which was used in many early Edward valves and is still used in many competitive valves, Stellite 21° is more ductile and impact resistant. These properties provide superior resistance to cracking of valve seating surfaces in service.

Stellite 21 is used either as a complete part made from a casting (as in Univalve discs and small Equiwedge gate valve wedges) or as a welded hardsurfacing deposit. Depending on valve size and type, hardsurfacing material is applied by a process that ensures highest integrity (PTA, MIG, etc.).

While the as-deposited (or as-cast) hardness of Stellite 21 is somewhat lower than that of Stellite 6, Stellite 21 has a work-hardening coefficient that is five times that of Stellite 6. This provides essentially equivalent hardness after machining, grinding, and exposure to initial seating stresses. In addition, low friction coefficients attainable with Stellite 21 provide valuable margins in assuring valve operation with reasonable effort or actuator sizing.

The properties of Stellite 21 also provide an advantage to the user long after a valve leaves the Edward plant. If a large valve seat is severely damaged in a localized area, as may occur due to closing on foreign objects, the seat may be repaired locally and refinished, in such cases, where a valve cannot be adequately preheated before welding, a Stellite 6 seat may crack during the repair process – requiring either removal of the valve from the line or in situ removal replacement of the complete seat.

Some Edward valves have used solid discs made of hardened ASTM A-565 Grade 616 or 615 stainless steel. This corrosion-resistant alloy has been proven in seating and erosion tests and in service. This material can be furnished in certain valves for nuclear-plant services where reduced cobalt is desirable. Similar iron-base trim materials are used in production of certain standard valves. Extensive research on other cobalt-free valve trim materials has also identified other alloys which provide good performance under many service conditions. Consult Flowserve about any special trim requirements.


3.5 Valve-Stem Packing

Stem sealing is an extremely important valve performance feature, since seal leakage can represent energy loss, a loss of product and a potential environmental or safety hazard. Consequently, Edward stop and stop-check valves employ stem packings that have been qualified by extensive testing.

The search for improved sealing performance was a primary reason for seeking out new stem-packing materials to replace asbestosbased packings. The demand of many valve users to discontinue use of asbestos due to health risks was an important secondary reason. Since there are no simple laboratory tests that will predict sealing performance based on measurable properties of packing materials, hundreds of tests have been necessary with various packings in valves or valve mockups.

Some packings required frequent adjustments due to wear, extrusion or breakdown, and some could not be made to seal at all after relatively brief testing. All standard Edward stop and stop-check valves now employ flexible graphite packing which provides excellent stem sealing. However, the key to its success involves retaining the graphitic material with special, braided end rings to prevent extrusion. Various end rings are used, depending on the valve pressure class and expected service-temperature range. All Edward valves assembled since January 1986 have been asbestos-free.

See V-REP 86-2 for more information.

Maintenance

FLOWSERVE EDWARD VALVES ON-SITE FIELD SERVICE REPAIR CAPABILITIES

Flowserve is totally committed to customer service satisfaction. Our entire manufacturing operation guarantees we will stand behind our field service repair work to maximize customer support.

OUR FACILITY OFFERS

- · Mobile machine shop trailer for on-site repairs
- After-hours plant-based service team for around-the-clock coverage
- Expertly trained field service personnel capable of handling any size of field service job
- Special equipment for seat refinishing, body boring, welding and stress relieving
- In-house valve repair and return remanufacturing to original specifications with new valve warranty

Phone Toll-Free 24 Hours a Day 365 Days a Year (Day) 1-800-225-6989 (Night) 1-800-543-3927

- Experience in turnkey jobs to help the customer with onestop shopping
- 180,000-sq.-ft. manufacturing facility with state-of-theart machining and engineering capability and ISO 9001 certification
- Flowserve Raleigh is ISO 9001 certified and approved by Hartford Steam Boiler Global Standards (HSBGS) Quality Assurance
- Flowserve Raleigh is authorized by the National Board of Boiler and Pressure Vessel Inspections to use the "NR" symbol.

STAYING ON-LINE WITH FLOWSERVE

We design and manufacture our valves for 40 years' life in the field. That means not just building a reliable product, but one that is easy to maintain and service. It also means providing a team of experienced, dedicated professionals to keep your Flowserve valves operating at peak performance.

Highly Experienced Technicians

Flowserve brings unmatched experience to the field. Our service technicians have an average 20 years in the industry, and 15 years with Flowserve. Each has special skills, such as welding and machining, that we can target for the needs of the individual job.

Comprehensive Record-keeping

Our files include original specifications for every Flowserve valve sold since 1908. All valves are coded for easy identification. On new and replacement orders, Flowserve stands ready to provide the complete lot-traceability required for nuclear and other critical services.

In-line Service

We are dedicated to on-site service whenever possible. To this end, we not only provide highly experienced, expert personnel—but we also support those technicians with field equipment, including portable boring, lapping, welding and weld-cutting machines. Major parts, such as discs or bonnets, can be air-shipped back to the factory for service and repaired while service personnel perform other tasks.

Parts Replacement

Our comprehensive record-keeping system also facilitates replacement of parts. Our computer database can quickly show us if we have the part in stock or on order, or how we can best coordinate raw materials and factory resources for the quickest possible turnaround time.

New 90-day Warranty

On all valves repaired to Flowserve's standards, we will issue a new 90-day warranty.

Factory Repair & Upgrading

Our After-Hours Coverage Team (AHCT) specialists are on-call around the clock, seven days a week, to deliver on our commitment to provide immediate response to our customers' requirements. Whether your requirements are for a planned outage, preventive maintenance or an emergency demand, Flowserve will remanufacture or upgrade valves to the original or most current specification. Our in-house engineering and quality assurance support is committed to meet the required turnaround time.

Planned & Emergency Outages

Our service managers will coordinate scheduled maintenance, and also get technical assistance to your facility quickly for emergency needs.

Hexagona Department has an initial and any basingly as the design and manufacture of the parallels. When property services the Deverse product is thereigned to perform the estimated functions and/or deverse products the Boosterne of Chronice and Chroice and Chroni

When the internation and sample succession is the territory are beneard to be accurate, they are seguined to extend or parameters, with and the contrastent particle or approach with the set of the second of the contrastent particle or approach with respect to the particle or approach to the second of the contrastent particle or approach to the second of the second

© 3008 Pleasante Expectation, Inving, Texas, USA. Florenamic is a nightweek trademank at Florenamic Expectation.

United States

Flowserve Corporation Flow Control 1900 South Saunders Street Raleigh, NC 27603 Telephone: +1 919 832 0525 Telefax: +1 919 831 3369

flowserve.com