

TruSeal Valve Product Information

TruSeal double block and bleed plug valves are a product of The Orbit Valve Division of Cooper Cameron Valves

Index

The TruSeal Valve1-4
Features and Benefits5
How TruSeal Works6

In-Line Maintenance Position Switches Locking Devices.....

Bleed Systems8-9	
Dimensional Data 10-12 ANSI 150	
Extensions13	
Material Specifications14	
Operating Mechanisms15	
Power Operation	

Orbit Valve Locations......Back Cover

Contamination is Avoided in Multi-Products Manifolds

Multi-Products Manifolds

The TruSeal positive shut-off, double block and bleed valve was developed for multi-products fuel manifolds Busy manifolds must operate frequently, switching from product to product, often with power actuators and sometimes without human supervision. Valves that can be trusted to seal drop-tight, every time, will avoid the expensive consequences of contaminated fuel. Liquid fuels that move through pipeline manifolds are reliably segregated by provable, zero-leakage, TruSeal valves. Every TruSeal valve in the manifold has assured double block and bleed shut-off that proves total isolation of each product. By using TruSeal valves, gasoline, diesel, kerosene, jet fuel, heating oil and LPG as well as crude oil and natural gas are protected from contamination.

Meter Block Valves Hold the Key to Accurate Measurements

Meter Stations

Flow meters require calibration to verify their accuracy. During meter calibration (proving), every closed value in the meter system must seal drop tight. Even a small leak will cause errors in the meter calibration. The incorrect meter factor will persist until the next proving operation and incorrect flow measurement can cost huge sums of money!

Every TruSeal valve in the meter station can be quickly and easily shown to be holding leak-tight. That means correct calibration...every time.

The Provable Zero-Leakage Double Block & Bleed Plug Valve With Retracting Seals

Problems With Other Valves

In meter block service, the differential pressure across each closed valve is very low. There is no assistance from line pressure to "energize" or compress floating seals to make them hold tight. Unless the body cavity in a ball valve is vented, the seals typically rely on springs to press them against the ball. The ball valve may be leaking, until the user opens the bleed. Then the reduction of body pressure introduces a hydraulic force on the seat that may stop the leak. The user can form a false impression that the ball valve is holding tight, when in reality, it leaks.

In contrast, the mechanical wedge-action of the TruSeal plug compresses both the upstream and the downstream seals firmly against the valve body, needing no help from line pressure. **TruSeal valves hold** with consistent zero-leakage.

Tru Seal Valves Work in Meter Systems...Ordinary Valves Don't!

Tank Storage Isolation

Fuel in storage tanks is exposed to the risk of contamination and loss-of-volume unless the tank isolation valves can be checked for zero-leakage. Tank-side valves are operated frequently, but assuring tank integrity without TruSeal can be troublesome and expensive.

Hydrant Isolation

Fuel hydrants at busy airports must be regularly pressure tested to check the integrity of the pipes, flanges and gaskets. But the only time this inspection can be performed is in the few hours each night when the airport is dosed. On some occasions, sections of the hydrant must be isolated for extension, modification or repair. Or it may become necessary to isolate, section by section, to find the location of a leak. Airports don't have the time to drain fuel from the lines or to swing line blinds for traditional line block, but the entire hydrant must be isolated and pressurized to prove that it is safe.

TruSeal valves are the **recognized Hydrant Valves for airport service** because:

- + They close quickly and easily.
- They require very little maintenance.
- They hold with zero-leakage.

The hydrant pressure-test can begin as soon as the valves are closed, since the TruSeal valves show that the hydrant is totally isolated. Using line blinds (or "skillet plates") for segregation involves a long, costly and perhaps hazardous operation of draindown, lock-out and tag-out. Traditional gate valve DBB will produce constant loss of fuel from the open bleed. TruSeal valves offer simple, provable, **tank-side isolation** and they give absolute assurance of valve integrity.

Tank-Side Isolation Maintains Product Integrity

Buried Hydrants Require Regular Pressure Tests

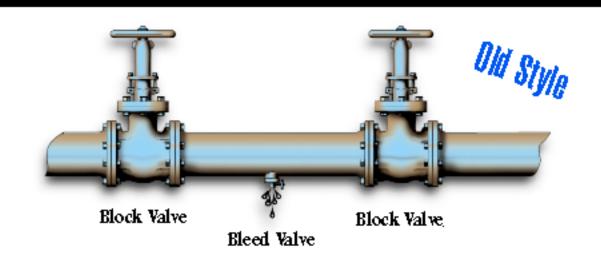
User Assets Must Be Protected at the Custody Transfer or Battery Limit Positions

Battery Limit Isolation

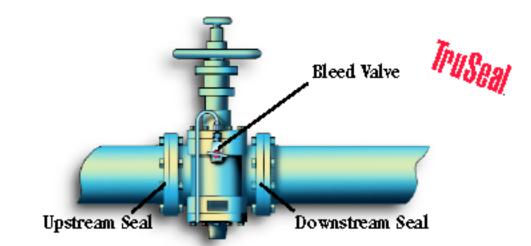
When different companies share a common pipe system, provable isolation is essential to protect the assets of each user. TruSeal valves ensure zero-leakage, allowing each company to verify the safe custody of its fuel and protect against contamination or loss.

Government taxation inspectors can witness the drop-tight segregation of fuels provided by the TruSeal valve, confirming that tax-free and taxed fuels are honestly stored and segregated.

Finesafe Protection of Life and Property is a TruSeal Daily Task


Safety Isolation

Safety regulations demand total, provable isolation of equipment before maintenance, cleaning or repair. Fuel handling may use pumps, compressors, filters, strainers, mixers, blenders, heat exchangers, meters and control devices. All of these may require safe isolation during repair, while the plant continues to run.


TruSeal valves have two independent resilient seals, both of which can be checked to prove complete, safe isolation. Plus, every TruSeal valve has four firesafe contact surfaces that prevent a fire incident from becoming a disaster.

TruSeal valves are approved by the safety departments of governments and energy companies for the safe isolation of plant and equipment during maintenance.

What Double Block and Bleed Means.

Traditional double block and bleed requires the use of two block valves separated by a spool. A bleed valve is used to drain the spool when both valves are closed to prevent fuel from the high pressure line leaking into the low pressure line.

The TruSeal valve provides the same function as the traditional double block and bleed but without product wastage through the open bleed. The upstream and downstream seals provide the same function as the two block valves. The body bleed serves only to prove that the seals are holding tight.

The TruSeal Valve

Loading-Unloading

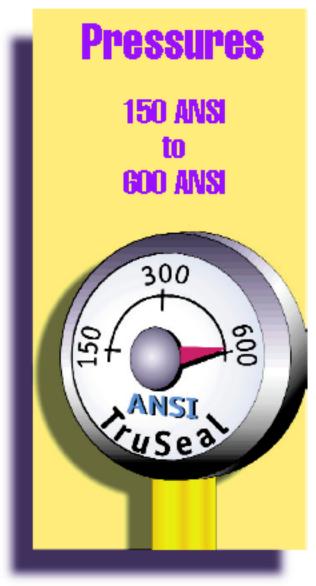
Fuel loading/unloading may require hundreds of open/close strokes of the connection valves every day. The valves typically operate against full pump pressure on every stroke, and they must close without leakage.

Safety and environmental concerns

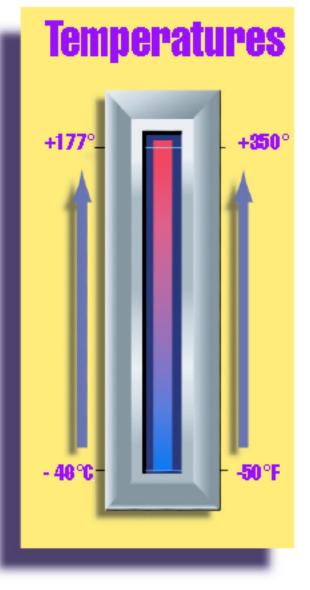
demand that the fuel is absolutely and totally contained within the pipe, yet the valves must operate quickly and easily.

TruSeal valves have two resilient seals that fully retract from their seated position without any seal rubbing...even at full differential pressure. Plug turning is effortless AND slam-proof!

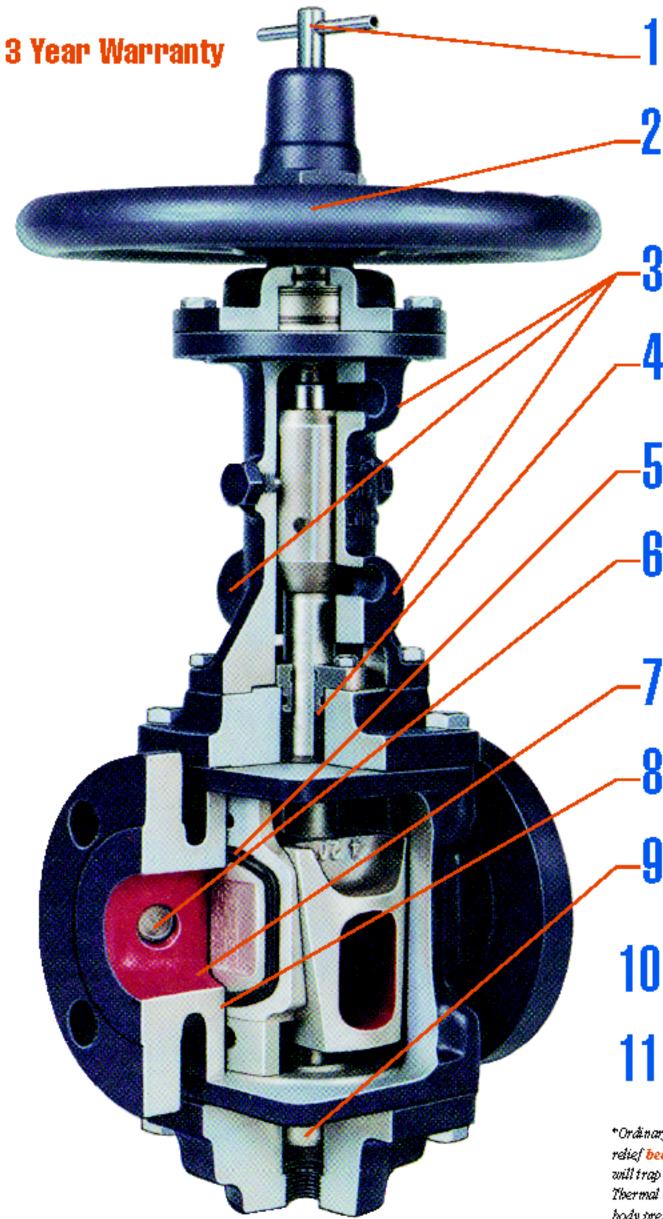

Fuel Loading Hazards Are Eliminated


Countless loading facilities depend on TruSeal valves for safe, reliable, zeroleakage shut-off at rail, truck and shipside manifolds. From Alaska to Argentina; from Sidney to Sicily; from New York to New Zealand, fuel movement managers have discovered TruSeal valves are the only valves they can trust to deliver real dependability at their loading manifolds.

Sales and Service Around the World, Around the Clock


Everything mechanical requires attention from time to time. TruSeal valve service and support personnel are located around the world to provide users with repair facilities, training, spare parts and applications advice.

Contact the company at any address on the back cover of this catalog,



A Full Range of Choices.

Features & Benefits

Positive Position Indicator. The indicator flag cannot be misaligned, as required in specification AH 599.

Low Torque/Slam-Proof Operation With Easy Turning Hand Wheel. TruSeal operator will not allow the plug to slam. This eliminates the risk of line shock, water hammer and injury to workers.

Accessory Mounting Pads. Optional limit switches or automatic body bleed can be mounted at these points.

Positive Stem Sealing. The deep stuffing box with fire safe graphite rings plus packing gland O-rings, assure positive emission control.

Bubble Tight Sealing. Frictionless, nonlubricated compressive sealing, upstream and downstream, assures total segregation.

Body Pressure Relief.* This optional accessory provides the means to relieve body pressure without emission into the atmosphere and prevents thermal pressure plug-lock.

Advanced Port Design. Flow contours at the entry and exit ports, plus attention to plug shape have minimized pressure drop.

Fire Safe. Metal seating surfaces match the body shape for metal-to-metal sealing both upstream and downstream.

Double Trunnion Design. Positive seal retraction during opening and closing is assured by tough trunnions at the bottom and top of the plug.

Body Bleed. (Optional) Proves seals are holding drop-tight with zero-leakage. Positive segregation is assured.

In-Line Repairable. Bottom and top entry for fast and simple replacement of seals.

*Ordinary double sealed values seldom need body pressure relief **because their seals leak.** TraSeal zero-leak values will trap liquid or gas in the body cavity when closed. Thermal changes at the value can increase the internal body pressure, causing possible opening resistance.

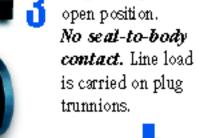
CLOSED

Valve fully closed. Plug is down with the resilient seals compressed against the valve body

VALVE OPENING CYCLE

Sealed Tight. Plug down, seals expanded outward against the body. Valve is fully closed.

Body Bleed PROVES **Drop-Tight Sealing!**

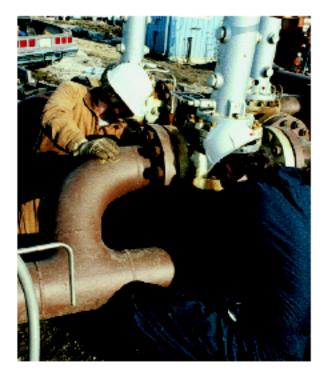

Plug raised. Seals retracted from body contact by plug dovetail connections.

Plug turning toward

Plug turned a full 90°, positioning the seals over both the up and downstream ports.

- - Valve fully open. Seals protected from the flow path.

Plug turning toward the closed position. Resilient seals are held away from the body by plug dovetail connections.



CYCLE

VALVE CLOSING

In-Line Repair

For ease of maintenance and repair, TruSeal has **bottom and top access**. If there is clear space below the valve, (see dimension L, pages 8 - 13), remove the lower plate. The seals will slide off the dove-tail on the plug faces.

If bottom access is not convenient, top entry is also provided.

WARNING: Do not attempt any repairs on TruSeal valves unless you are certain the line pressure has been removed and line contents drained from the valve and the line and the body cavity!

Failure to follow these instructions could result in injury to personnel, or cause hazardous product to be vented from the valve.

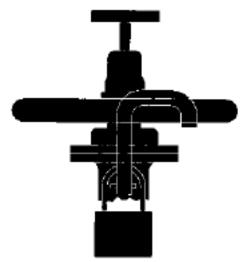
For complete instructions on installation and repair, request a copy of TruSeal Installation Manual from **Orbit Valve Company**. See back cover for locations.

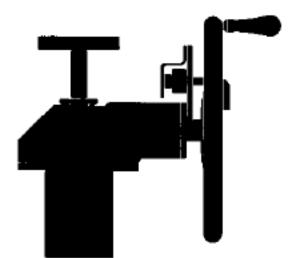
Position Switches

Locking Devices

Open/closed position switches for geared models only.

Fully enclosed, explosion proof SPDT or DPDT contacts.


20 amp @ 125,250 or 480 VAC 1/2 amp @ 125 VDC


Open/closed position indicating switches for both handwheel and gear operated models.

Fully enclosed, explosion proof SPDT or DPDT contacts.

2 amp @ 240 VAC 50 milliamps @ 24 VDC

Locking device for hand operators

Locking device for gear operators

Chainwheel Drive

Bleed Systems

Manual Bleed Valve (MBV)

The simplest bleed valve for hand operated TruSeal valves. When TruSeal is closed, open the body bleed valve to verify droptight sealing. Close MBV before opening the TruSeal.

CAUTION! Bleed outlet should be piped for proper drainage to a pit, reservoir or other suitable disposal system to prevent hazardous or unsightly spills of the body liquid. Note the "goose neck" vent pipe that prevents drainage of the body liquid.

* Thermal relief systems are designed to relieve excess pressure rise in the body cavity of a closed value due to increasing ambient temperature which causes expansion of the liquid in the value.

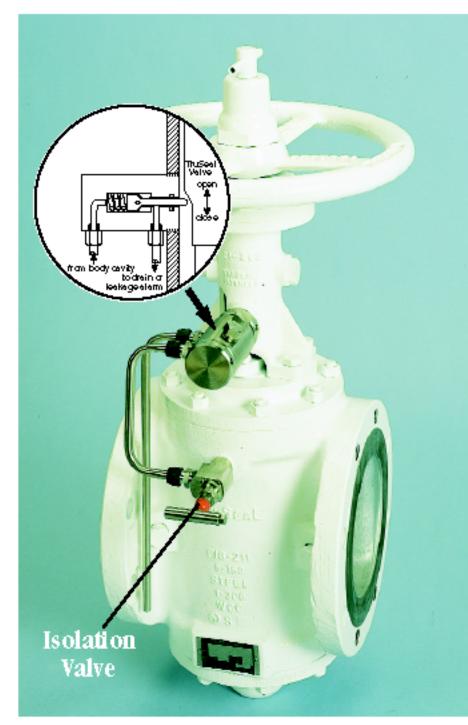
** The relief value is set to open at 2.5 psi differential on all values regardless of their working pressure. With the TruSeal closed, the relief value will open at 2.5 psi above up-stream pressure. This system functions only when the TruSeal value is closed and the isolation value is open.

All bleed systems are shown on a 6-inch 150 Class valve. (For illustration purposes only)

Manual Bleed Valve with Thermal Relief (MTR)*

The Manual Bleed proves drop-tight sealing. The Thermal Relief Valve releases any thermal expansion of the body liquid, safely and automatically back into the line. Relief set at 25 psi differential.**

NOT ILLUSTRATED:


Thermal Relief to Body (TRB)*

With the TruSeal closed the Thermal Relief Valve releases any thermal expansion of the body liquid, safely and automatically, back into the line. Relief set at 25 psi differential.**

Thermal Relief to Atmosphere (TRA)*

Similar to TRB except thermal relief is set at 50 psi above pipeline rated pressure and is vented to atmosphere.

Bleed Systems

Automatic Body Bleed Valve (ABV)

A plunger-actuated check valve is opened by the coupling cam as the TruSeal is closed. This system removes the human element from seal checking procedures, making it completely automatic.

As an optional feature, the isolation valve may be padlocked "open" to ensure total double block and bleed integrity, avoiding any risk of human error in sealing verification.***

(Position of the ABV is not as illustrated. Actual location of the ABV is directly above the flange.)

NOT ILLUST RATED:

Manual Bleed Valve with Gauge (MBG) Liquids Only

A Manual Bleed Valve is combined with a gauge when emission to atmosphere is undesirable. The gauge shows the pressure inside the body cavity at all times and can be used as an indication of seal tightness.

Consult **Orbit Value** for the typical pressure change that can be expected when closing any particular size of TruSeal value.

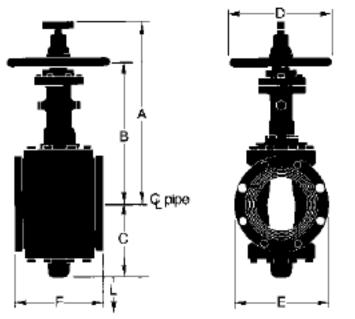
Thermal Relief Valve with Gauge (TRG)** (Liquids Only)

A Thermal Relief Valve, to relieve any body pressure which may build up due to thermal change, is combined with a gauge to indicate tight seals. No emissions to atmosphere. No sump system required. Relief set at 25 psi differential.**

*** CAUTION: As the TruSeal valve approaches its closed position, a cam opens the Automatic Bleed Valve allowing fluid to escape. When the valve reaches its fully closed position, the spurting liquid should cease, showing positive verification of double sealing. A proper sump system is required because spilled liquid or vented gas could be unsightly or hazardous.

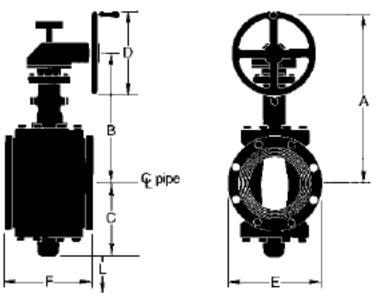
CAUTION: All automated TruSeal valves require some form of body pressure relief (TRE/TRA/MTR/AEV/TRG), otherwise the valve may be difficult to open or may stick in the closed position.

ANSI 150


REDUCED PORT

Part Part Part Part Part Part Part Part		Content.	of humdwithed	Centernur Banyest projust Banyest projust	Bandardheet w	Barrise diameter	Have to lake H	Clearning Boothom	Shern OF TO remove L	Soundset. So: Int travel	Bland CA, P. M. (Land) CA, IN G. P. M. (Land)	No. R. St. Hange	plane drain holes	Approxime in the & S.S.	Figure Mains	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Œ				5 127	10 254	6 18		<mark>а</mark> ю		6	200	-	1-1&		211-201
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PERAJ		16%		5			8	3		6	205	-	1-%	75 34	211-201
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	O TE										6	590	-	1-1⁄2		211-201
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	WHE					14	11	10% 266	8		8	1254	4 ¥r 10	2-%	195	211-202
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(UND)										7	2309		2-%		211-203
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I										8	3750		2-16		211-203
190 590 460 219 254 279 265 200 22 N+00 91 8 2774 2034 10%4 14 13%4 11%4 10 ½ 200 2309 4 2-¼ 395 211-203G 10 29 22 12%4 14 16 13 12 ¼ 23 3750 4 2-¼ 505 211-203G 11 29 22 12%4 14 16 13 12 ¼ 23 3750 4 2-¼ 505 211-203G 12 33%4 25%4 13%4 16 19 14 15 ¼ 24 4693 4 2-¼ 960 211-204G 200 979 676 394 406 469 965 981 22 24 5600 4 2-¼ 960 211-204G 300 979 676 394 406 591 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19 483</td> <td></td> <td></td> <td></td> <td>14</td> <td>4693</td> <td></td> <td>2-16</td> <td></td> <td>211-404</td>							19 483				14	4693		2-16		211-404
8 27% 20% 10% 14 13% 11% 10 ½ 20 2309 4 2-¼ 395 211-203G 10 29 22 12% 14 16 13 12 ½ 23 3750 4 -9 2-¼ 505 211-203G 10 290 707 659 211 366 400 12 ½ 23 3750 4 -9 2-¼ 505 211-203G 12 33% 25% 13% 16 19 14 15 ¼ 21 4633 4 2-¼ 760 211-204G 200 977 654 244 065 500 21 15 16 ½ 24 5600 4 2-¼ 900 211-204G 200 979 676 294 4005 500 251 16 ½ 24 5600 4 2-¼ 16 2-¼ <t< td=""><td></td><td></td><td></td><td>18%</td><td></td><td></td><td></td><td>10%</td><td></td><td></td><td>15</td><td>1254</td><td></td><td>2-%</td><td>200</td><td>211-202G</td></t<>				18%				10%			15	1254		2-%	200	211-202G
$ \mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} = \begin{bmatrix} 200 & 709 & 531 & 267 & 356 & 342 & 292 & 254 & 22 & & & & & & & & & & & & & & & & &$											~	~~~~		0.17		044 00000
250 777 559 211 356 406 330 306 22 779 229 12 33% 25% 13% 16 19 14 15 ½ 21 4693 4 2% 760 211-204G 300 957 654 349 406 469 365 381 22 1 4693 4 2% 760 211-204G 14 34% 26% 15% 16 21 15 16 ½ 24 5600 4 2% 900 211-204G 360 679 676 394 406 652 391 406 467 28 19 12 12.5 11-204G 19 14 12.5 12 12 12 13 38 6978 8 2.1% 1325 211-205G 18 43% 33% 19% 20 25 17 18 11% 38				20% 531				292			20	2009	4 7+10	2-%		211-2050
450 1114 960 495 509 635 432 457 29 111/2 111/2 600 20 62 44 23½ 36 27½ 32 ^m 22 1½ 63 16299 - 2.1 3015 211-426M 20 1575 1119 597 914 699 912 ^m 659 36 63 16299 - 2.1 3015 211-426M 24 70% 54½ 25½ 24 32 36 ^m 24½ 1% 247 28400 - 2.1 3896 211-427G 600 1795 1375 655 610 913 918 ^m 631 35 247 28400 - 2.1 3896 211-427G 30 64¼ 46¼ 26¼ 918 601 35 32700 - 2.1 8425 711-250KS 750 1632 1175 667 914 994 1524 ^m 696 45 - 2.1 16400 711-250KS 3922			<mark>3</mark> 8								8	3750		2-%		211-203G
450 1114 960 495 509 635 432 457 29 111/2 111/2 600 20 62 44 23½ 36 27½ 32 ^m 22 1½ 63 16299 - 2.1 3015 211-426M 20 1575 1119 597 914 699 912 ^m 659 36 63 16299 - 2.1 3015 211-426M 24 70% 54½ 25½ 24 32 36 ^m 24½ 1% 247 28400 - 2.1 3896 211-427G 600 1795 1375 655 610 913 918 ^m 631 35 247 28400 - 2.1 3896 211-427G 30 64¼ 46¼ 26¼ 918 601 35 32700 - 2.1 8425 711-250KS 750 1632 1175 667 914 994 1524 ^m 696 45 - 2.1 16400 711-250KS 3922	æ										21	4693		2-%		211-204G
450 1114 960 495 509 635 432 457 29 111/2 111/2 600 20 62 44 23½ 36 27½ 32 ^m 22 1½ 63 16299 - 2.1 3015 211-426M 20 1575 1119 597 914 699 912 ^m 659 36 63 16299 - 2.1 3015 211-426M 24 70% 54½ 25½ 24 32 36 ^m 24½ 1% 247 28400 - 2.1 3896 211-427G 600 1795 1375 655 610 913 918 ^m 631 35 247 28400 - 2.1 3896 211-427G 30 64¼ 46¼ 26¼ 918 601 35 32700 - 2.1 8425 711-250KS 750 1632 1175 667 914 994 1524 ^m 696 45 - 2.1 16400 711-250KS 3922	RA]										94	5900		0.4		211,2043
450 1114 960 495 509 635 432 457 29 111/2 111/2 600 20 62 44 23½ 36 27½ 32 ^m 22 1½ 63 16299 - 2.1 3015 211-426M 20 1575 1119 597 914 699 912 ^m 659 36 63 16299 - 2.1 3015 211-426M 24 70% 54½ 25½ 24 32 36 ^m 24½ 1% 247 28400 - 2.1 3896 211-427G 600 1795 1375 655 610 913 918 ^m 631 35 247 28400 - 2.1 3896 211-427G 30 64¼ 46¼ 26¼ 918 601 35 32700 - 2.1 8425 711-250KS 750 1632 1175 667 914 994 1524 ^m 696 45 - 2.1 16400 711-250KS 3922	a	350	879	676	384	406	533	381	406	22					408	
450 1114 960 495 509 635 432 457 29 111/2 111/2 600 20 62 44 23½ 36 27½ 32 ^m 22 1½ 63 16299 - 2.1 3015 211-426M 20 1575 1119 597 914 699 912 ^m 659 36 63 16299 - 2.1 3015 211-426M 24 70% 54½ 25½ 24 32 36 ^m 24½ 1% 247 28400 - 2.1 3896 211-427G 600 1795 1375 655 610 913 918 ^m 631 35 247 28400 - 2.1 3896 211-427G 30 64¼ 46¼ 26¼ 918 601 35 32700 - 2.1 8425 711-250KS 750 1632 1175 667 914 994 1524 ^m 696 45 - 2.1 16400 711-250KS 3922	Т.				19% 495			16			38	6978	8 1-8	2-%		211-205G
20 62 44 23½ 36 27½ 32 ^m 22 1½ 63 16299 - 2.1 3015 211-426M 500 1575 1119 597 914 699 912 ^m 669 36 1% 63 16299 - 2.1 3015 211-426M 24 70% 54½ 25½ 24 32 36 ^m 24½ 1% 247 28400 - 2.1 3896 211-427G 600 1795 1375 655 610 913 918 ^m 631 35 247 28400 - 2.1 3896 211-427G 30 64¼ 46¼ 26¼ 918 631 35 247 28400 - 2.1 3896 211-427G 30 64¼ 46¼ 26¼ 36 38% 60 ^m 27 1% 58 32700 - 2.1 8425 711-250KS 750 1632 1175 667 914 984 1524 ^m 696 65 65<	GE	18	43%	33%	19%			17	18	11%	38	7050	8	2-%		211-205G
500 1575 1119 587 914 699 912** 559 35 - - 1366 24 70% 54% 25% 24 32 36** 24% 1% 247 28400 - 2.1 3896 211-427G 600 1795 1375 655 610 913 918** 631 36 - - 2.1 3896 211-427G 30 64% 46% 26% 36 38% 60** 27 1% 58 32700 - 2.1 8425 711-250KS 750 1622 1175 667 914 994 1524** 696 45 - 2.1 8425 711-250KS 36 67% 49% 30% 36 46 68** 33 1% 58 46300 - 2.1 16400 711-250KS 36 67% 49% 30% 36 46 68** 33 1% 58 46300 - 2.1 16400 711-250KS											~	10000				011.10011
600 1795 1375 655 610 919 631 35 1767 30 64¼ 46¼ 26¼ 36 38% 60 ^m 27 1% 58 32700 - 2.1 8425 711-250KS 750 1632 1175 667 914 994 1524 ^m 696 45 - 2.1 8425 711-250KS 36 67% 49% 30% 36 46 68 ^m 33 1% 58 46300 - 2.1 16400 711-250KS											63	16299	-	2-1		211-426M
30 64¼ 46¼ 26¼ 36 38% 60 ^m 27 1% 58 32700 - 2.1 8425 711-250KS 750 1632 1175 667 914 994 1524 ^m 695 45 - 2.1 8425 711-250KS 36 67% 49% 30% 36 46 68 ^m 33 1% 58 46300 - 2.1 16400 711-250KS											247	28400	-	2-1		211-427G
750 1632 1175 667 914 994 1524** 696 45											58	32700	_	2.1		711-250KS
		750			667	914			696	45					3822	
									33		58	46300	-	2-1		711-250KS

NOTE: All body bleed holes are 1/2" NPT except 20" and larger which have 1" bleed holes in valve throat. Dimensions are for reference only. Request certified drawings when required. — **Manufacturer's standard face to face dimension. 30" and 36" valves have reduced round hole plug port.


Metrics printed in blue.

Hand Wheel Operated

Recommended for all sizes up to and including 10" (250mm)

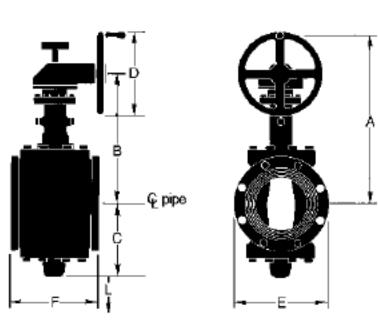
Gear Operated

Recommended for all sizes 12" (300mm) and larger

REDUCED PORT

	Centerius highest point	of humderhead	Contest point Jonnest point Jonnest point contestine an	Bandowhites) w	Hange diamer	Parke to larker E	Cheatener Polyton	Shena or mener shudt dianneder shudt dianneder	Number Sor hull travel	Blowing C. M. Charles	No. R. Britten Breitern	No. Barrie of support	Approxime of Sumer	Figure man	
	2	16% 413	11% 302	5 127	10 254	6% 165	8% 216	3 76	% 22	6	210	-	1-1%	65 29	221-201
EEL	3	16% 413	11% 302	5 127	10 254	8% 210	11%	3 76	% 22	6	220	-	1-1%	90 41	221-201
HANDWHEEL	4	20% 527	15 381	5½ 130	14 355	10 254	12 305	6 152	1½ 29	5	620	-	1-%	145 66	221-202
HAN	6 150	24% 529	18% 450	8 203	16 406	12% 318	1 <i>5</i> %	9 229	1兆 35	6	1302	-	1-1% 1-%	275 125	221-203
	8 200	37% 946	31% 794	111½ 283	20 508	15 381	16½ 419	9	1 % 41	13	2674	4 **9	1-1% 1-1%	570 258	221-404
	4 100	21% 546	16% 419	5½ 130	10 254	10 254	12 305	6 152	% 22	10	620	-	1-1%	155 70	221-202G
	6 150	26% 676	19%	8 203	14	12%	15%	9	% 22	18	1302	-	1-1% 1-1%	300	221-203G
	8 200	31% 797	23% 594	111/2	16	15	161/2 419	9	% 22	20	2674	4 %9	1-% 1-%	595 270	221-204G
_	10 250	41% 1057	33% 854	12% 321	16 406	17½ 445	18 457	12 305	% 22	42	4200	4 1-8	2-1%	730 331	221-404G
GEAR OPERATED	12 300	51% 1301	39% 997	17% 438	24 610	20% 521	19% 502	14 355	1%sp 35	45	5507	-	2-1%	1215 551	221-409M
PER	14 350	55% 1 419	43% 1114	18 457	24 610	23 584	30 762	16 406	1%/sp 34	76	7000	-	2-%	1500	221-406G
SAR (16 400	59% 1508	41% 1051	20% 514	36 914	25% 648	33	18 457	11% 29	63	8300	-	2-1%	1870	221-426M
6I	18	59% 1508	41% 1051	20% 518	36 914	28 711	36 914	18 457	1% 35	ങ	8400	-	2-%	1985 900	221-426M
	20 500	64% 1648	52% 1343	22% 581	24 610	30½ 775	39 991	21 533	1 % 35	247	17500	-	2-%	4100	221-427G
	24 600	71 1825	52% 1341	24% 629	36 914	36 914	52 1321	24 610	1所 45	58	21800	-	1-1 1-1%	8000 3629	721-250KS
	30 750	73% 1957	5534+ 1408	27% 702	36 914	43 1092	65 1651	28 711	1所 45	58	33900	-	2-1	15000 6804	721-250KS

NOTE: All body bleed holes are 1/2" NPT except 20" and larger which have 1" bleed holes in valve throat.


Dimensions are for reference only. Request cartiled drawings when required. 24° and 30 $^{\circ}$ valves have reduced round hole plug port.

Metrics printed in blue.

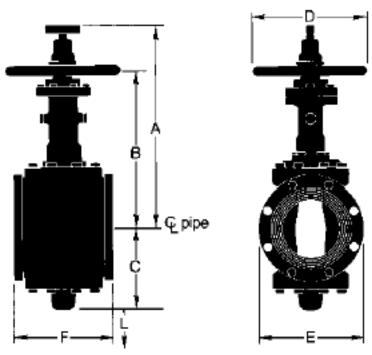
ANSI 300

Recommended for all sizes up to and including 6" (150mm)

Recommended for all sizes 8" (200mm) and larger

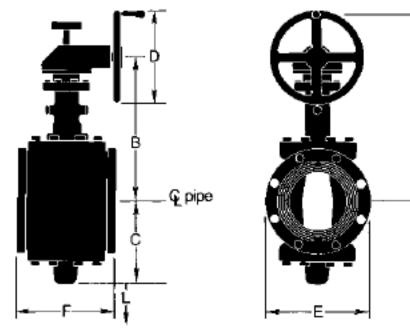
Gear Operated

ANSI 600

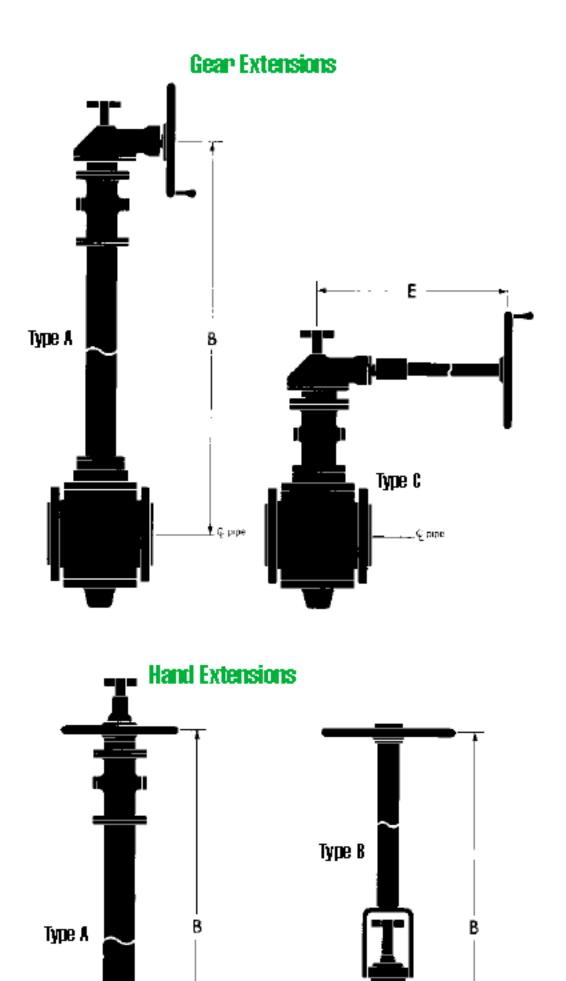

REDUCED PORT

	Centering Highest point		enterline B		plange dianas	E	chearcare bothom	sheadt dianneder sheadt dianneder sheadt dianneder	Number Number Lor full travel	Bowess Cylin 6.9. M. (Duri) Cylin 6.9. M. (Duri)	No. Robert Hantse	plane drawn houses	Approxime of Lonnes	Rigure Num	
ΞĒ	2	19%	13/4	5% 130	14	6% 165	11%	3 76	11/2	5	290	-	1-%	115	241-202
HAND WHEEL	3	1965	13%	5½ 130	14	8%(210	14	3 76	11% 29	5	300	-	1-1%	135 61	241-202
HAN	4 100	241% 622	18 <mark>457</mark>	7 3 5 197	16 406	10%i 273	17 432	4 102	1% 35	5	850	-	1-1%	240 109	241-203
	2 50	20% 517	15% 390	5½ 130	10	6% 165	11%	3 76	% 22	10	290	-	1-%	120	241-202G
	3	20% 517	1.5% 390	5½ 130	10	8% 210	14	3 76	% 22	10	300	-	1-1%	140 63	241-202G
	4 100	26% 673	19% 495	7% 187	14 356	10%i 273	17 432	4 102	¾ 22	15	850	-	1-1%	265 120	241-203G
ATE	6 <mark>15</mark> 0	30% 776	22** 573	1 1½ 283	16 406	14 356	22 <mark>559</mark>	888	% 22	24	2550	Ι	1-%	575 262	241-204G
OPER	8 200	48% 1232	365 <mark>18</mark> 19	16% 419	24 610	16% 419	26 660	7 179	1% 35	81	5300	-	2-1%	1200 545	241-425M
GEAR OPERATED	10 250	56% 1427	38% <mark>970</mark>	17% 438	36 <mark>914</mark>	20 509	31 <mark>787</mark>	11 279	1% 35	63	8200	-	2-1%	1665 755	241-426M
9	12 300	56% 1432	38% 975	18% 473	36 <mark>914</mark>	22 559	33	12 305	1% 32	50	6200	-	2-1	2550 1157	741-100KS
	14 350	79% 2030	48 1219	19% 505	36 <mark>914</mark>	23% 603	35 89	14 356	1% 45	53	7950	-	2-1	31.00 1406	741-250KS
	16 4 00	65'%• 1675	471%) 1218	19% 505	36 914	27 686	39 <mark>991</mark>	14 356	1% 45	53	10050	-	2-1	4300 1950	741-250KS

NOTE: All body bleed holes are 1/2"NPT except 12" and larger which have 1" bleed holes in valve throat. Dimensions are thr reference only. Requestcer thied drawings when required. 12" through 16" valves have reduced round hole plug port.


Mettics printed in blue.

Hand Wheel Operated


Recommended for all sizes up to and including 4" (100mm)

Gear Operated

Recommended for all sizes 6" (150mm) and larger.

Extensions

ք_նրոր

 When ordering vertical extensions, always specify dimension "B" desired.

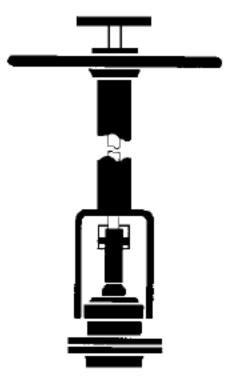
• Dimension "B": Centerline of pipe to center of handwheel.

• Extension type "A" is required for underground burial.

• When ordering lateral type "C" extensions, always specify dimension "E" desired.

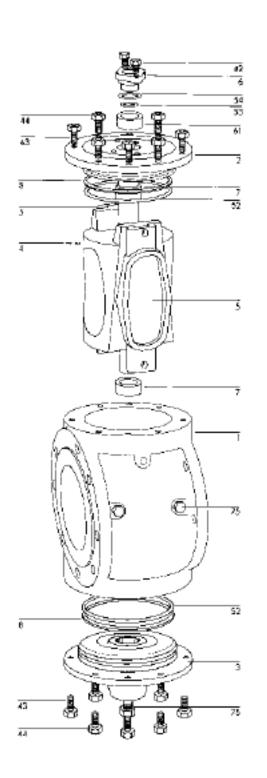
• Dimension "E": Vertical centerline of valve to the centerline of handwheel plane.

• Extension type "C" should be supported if dimension "E" is more than 36" (100 cm).


Specify when ordering:

• Valve size, rating, figure number, operator type, extension type, and dimensions desired.

Body bleed extensions can be provided, if required.


Typical materials for extensions: ASTM A-106 GRB, SCH 80 pipe or equivalent.

Optional Flag Extension For Type "B" Extension

Note: Extensions are also available for power actuated valves.

1_ գրթe

Consult TruSeal Installation and Maintenance Manual for service information.

Standard Valve Materials

υu									
N0.	DESCRIPTION	MATERIAL SPECIFICATIONS*							
11	Body	ASTM & 216 GR WCC Sheel with Chrome Plated Bore							
12	Bonnet	ASTM & 216 GR WOX or ASTM & 105 Forged S mel							
13	Lower Plate	ASTM & 216 GR WOX or ASTM & 105 Forged S mel							
<mark>1</mark> 4	Phug	ASTM & 536 GR 80-55-06 Ductile Iron or WCC Spel**							
<mark>1</mark> 5	Slip	ASTM & 536 GR 65-45-12 Ductile Iron or NiResist							
<mark>1</mark> 6	Packing Gland	ASTM & 216 GR WOC							
17	Bushing	ASTM & 436 Type 1 NiResist							
18	Gasket	Stainless Steel/Graphite Spiral Wound — or Graphite							
42	Packing Gland Bolt	ASTM & 193 GR B7 Steel							
43	Body Stud	ASTM & 193 GR B7 Steel							
44	BodyNut	ASTM & 193 GR 2H Smel							
52	Body O-Ring	Viton* (used prior to 1998)							
53	Inner Gland O-Ring	Viton [●]							
54	Outer Gland O.Ring	Viton [●]							
61	Packing Set	Graphite							
75	Body Drain Fipe Plug	Steel							
Watari	i als subject to change without notice.	*Electroless Michel Matel. Viton is a registered trademark of Du Pont.							

Reduced Port TruSeal values have reduced bore with nominal plug port area 65%

The port shape has been optimized to achieve streamlined flow and lowest pressure drop. Pressure drop for any TruSeal value may be calculated using the value of flow coefficient (G_{y}) listed on pages 10-12 of this catalog.

Pressure Drop
$$(\Delta_{\mathfrak{p}}) = G\left(\frac{Q}{Q_{\mathfrak{p}}}\right)^{\mathfrak{c}}$$
 for Liquids
 $G = \text{Specific Gr}$

G = Specific Gravity of Liquid Q = Flow Rate in US. gpm

Gu = Flow Coefficient

MARKINGS AND STANDARDS (where applicable)*

OPERATING TEMPERATURE RANGE Standard Trim -O'F to +350'F (-18°C to + 177°C) Special materials may change the temperature range.

SPECIAL OPTIONS

Low temperature steel, A-352 GR IDC. (-50°F / 46°C) Stainless Steel Nickel plated body bore. PTEF/Teflon seals. NACE Trim Special Trim for Ammonia, MTRE, Alcohol, etc.

SPE CIFICATIONS ANSI 8 16.5 Steel Pipe Hanges and Flanged Fittings. Hange Dimensions. ANSI 8 16.10 Face-to-Face and End-to-End Dimensions of Ferrors Values ANSI 8 31.3 Chemical Plant and Patroleum Refinery Piping.

MARKLING S Cast Numbers on the Side of the Body Indicate Valve Size and Pressure Class. 211 = ANSI 190 Reduced Rectangular Port 221 = ANSI 300 Reduced Rectangular Port 241 = ANSI 600 Reduced Rectangular Port 721 = ANSI 300 Reduced Round Port ...sto. EXAMPLE: 4-211 is 4"Nominal Pipe Bore Size,

GRADE OF STEEL Is cast on the side of the body: WCC, ICC, at c.

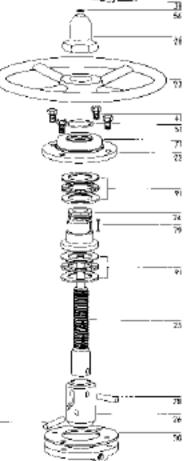
ANSI Class 1 50.

SERIAL NUMBER Is stamped on the adge of one flange and on the nam epilate.

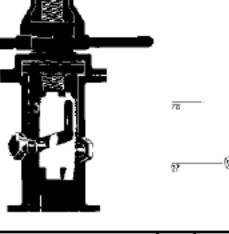
*See dimensional data for variations.

Hand Operator 200 Series

Patented

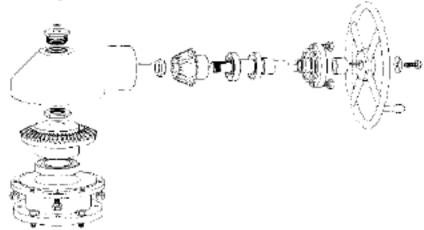

Slam-Proof

Torque-Magnifying


Easy To Maintain

Approximately 3 turns of the handwheel will rotate the plug 90°.

Additional turns will expand the seals



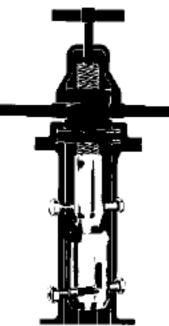
e

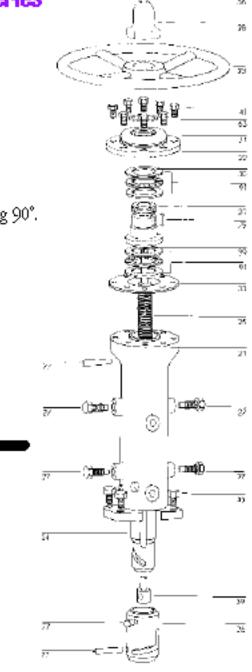
NO.	DESCRIPTION	NO.	DESCRIPTION
21	Operator Housing	38	Indicator Flag Pin
22	Bearing Cap	41	Bearing Cap Bolt
23	Handwheel	45	Operator Housing Bolt
24	Drive Nut	51	Bearing Cap O-Ring
25	Stem	56	Dust Cap O-Ring
26	Coupling Cam	78	Coupling Fin
27	Cam Pin	79	Handwheel Key
28	Dust Cap	91	Thrust Bearing <i>I</i> ssembly

Gear Operator

Hand Operator 400 Series

Patented Slam-Proof


Extra Torque-Magnifying


Double Cam Drive System

Easy to Maintain

Approximately 6 turns of the handwheel will rotate the plug 90°.

Additional turns will expand the seals.

NO.	DESCRIPTION	NO.	DESCRIPTION
21	Operator Housing	38	Indica or Flag Pin
22	Bearing Cap	39	Indica or Flag Rod
23	Handwheel	41	Bearing Cap Bolt
24	Drive Cam	45	Operator Housing Bolt
25	Sem	56	Dust Cap O-Ring
26	Coupling Cam	63	Bearing Cap O-Ring
27	Cam Pin	77	Coupling Fin
28	DustCap	79	Handwheel Key
29	Drive Nut	91	Thrust Bearing <i>I</i> ssembly

The operator designs illustrated here do not apply to valves in sizes:

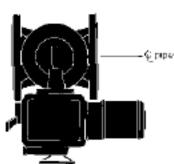
ANSI 150-30" and larger ANSI 300-24" and larger ANSI 600-12" and larger.

Consult TruSeal Installation and Maintenance Manual for complete service information.

TruSeal valves accept most commercially available electric motor operators.

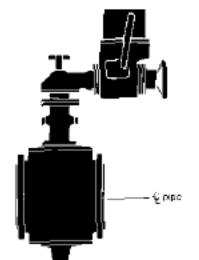
All automated TruSeal valves require some form of body pressure relief (TRB/TRA/MTR/ABV/TRG), otherwise the valve may be difficult to open or may stick in closed position.

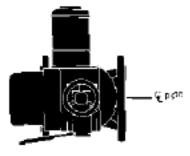
Choice of Motor Size


The best selection of valve, gearing and motor operator will depend on numerous factors including:

- pipeline pressure
- operating speed
- environmental conditions
- handwheel accessibility
- available power

Selecting the correct motor is a specialist task. Consult your TruSeal representative for free technical advice.


Typical Mounting Configurations*



Style "A": Actuator mounted parallel to pipe line.

Style "B": Actuator mounted at right angle to pipe line.

Style "C": Actuator top mounted at right angle to pipe line. Note absence of bevel gearing.

*Specific handwheel location will depend on type of actuator used.

Orbit Valve Company builds pneumatic actuators that can be fitted to TruSeal valves for reliable, economic power operation. When you specify a complete actuated valve package, the entire system is built, tested and guaranteed by Orbit Valve Company. Only a few of the available power operation choices are shown on this page. For complete information contact the company office nearest you for alternate packages.

Spring-close Piston Actuator

- For emergency shut-down service.
- Air-to-open. Spring-to-close.
- Fitted with gas/oil speed control snubber system and two-way manual override handwheel.
- Valve can be mechanically locked closed or mechanically locked open.
- Limit switches can be fitted for remote indication of the valve position.


Double-acting Diaphragm Actuator with Reservoir Tank

- For continued operation in case of air supply failure.
- Piston-type grease snubber for speed control.
- Position indicator limit switch for local and remote indication of valve position.
- Fitted with a complete instrumentation package for:
 - Fail Open or
 - Fail Close or
 - Fail in Last Position

Spring-close Diaphragm Actuator

- For emergency shut-down service.
- Air-to-open. Spring-to-dose.
- Fitted with integral gas/oil speed control snubber system.
- Position indicator limit switches for local and remote indication of valve position.
- Fitted with a complete instrumentation package for:
 - Close on Loss of Air Supply
 - Close on Loss of Signal
 - Open on Command
 - Close on Command
- Pressure gauge is included for proof of zero-leak shut-off.

Double-acting Diaphragm Actuator with Reservoir Tank

Spring-close Diaphragm Actuator

ORBIT VALVE Division of Cooper Cameron Valves 7200 Interstate 30 + Little Rock, Arkansas, 72209 U.S.A. Telephone (1) 501-568-6000 Wats (1) 800 643-6544 Facsimile (1) 501-570-5700 e-mail: ovc@orbitvalve.com

ORBIT VALVE UNITED STATES FACILITIES

ARKANSAS

P.O. Box 193520 Little Rock, Arkansas 72219 U.S.A. Telephone (1) 501-568-6000 WATS (1) 800-643-6544 Facsimile (1) 501-570-5700 TEXAS 16500 South Main Missouri City, Texas 77489 U.S.A. Telephone (1) 281-261-3742 WATS (1) 800-252-4618 Facsimile (1) 281-261-3749

SALES REPRESENTATIVES IN THESE U.S. LOCATIONS:

MOBILE, ALABAMA LITTLE ROCK, ARKANSAS BAKERSFIELD, CALIFORNIA LOS ANGELES, CALIFORNIA SAN FRANCISCO, CALIFORNIA DENVER, COLORADO ATLANTA, GEORGIA LAFAYETTE, LOUISIANA NEW ORLEANS, LOUISIANA TRAVERSE CITY, MICHIGAN ST. LOUIS, MISSOURI COLUMBUS, OHIO TULSA, OKLAHOMA PHILADELPHIA, PENNSYLVANIA CORPUS CHRISTI, TEXAS HOUSTON, TEXAS ODESSA, TEXAS TYLER, TEXAS CASPER, WYOMING

CENTRAL AMERICA SOUTH AMERICA AND MEXICO

ORBIT VALVE 16500 South Main Missouri City, Texas 77489 U.S.A. Telephone (1) 281-261-3742 WATS (1) 800-252-4618 Facsimile (1) 281-261-3749

EUROPE, AFRICA AND MIDDLE EAST

COOPER CAMERON VALVES Houstoun Road, Livingston, West Lothian, EH54 5BZ Scotland Telephone: (44) 01506 444000 Facsimile: (44) 01506 441320 CANADA

ORBIT VALVE #600, 715 7th Avenue S.W. Calgary, Alberta, Canada T2P 2X6 Telephone (1) 403-250-7747 Facsimile (1) 403-250-5237

Orbit, and ThuSeel are Trademarks of Cooper Cameron Corporation, Cooper Cameron Valves Division © Copyright 2001, Cooper Cameron Corporation, Cooper Cameron Valves Division ASIA, FAR EAST, Indian Sub-continent

COOPER CAMERON VALVES 2 Gul Circle, Jurong Industrial Estate Singapore 629560 Telephone (65) 861-3355 Facsimile (65) 861-7109

AUSTRALIA AND NEW ZEALAND

COOPER CAMERON VALVES 283 Burbridge Road Suite 43 Brooklyn Park 5032 South Australia Telephone (61) 8 8352-3077 Facsimile (61) 8 8352-3066